从人工智能看当代逻辑学的发展(2)
2015-05-18 02:07
导读:·解释或说明; ·对归纳概括以及概念的学习。 21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求
·解释或说明;
·对归纳概括以及概念的学习。
21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性。
我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。
1.常识推理中的某些弗协调、非单调和容错性因素
AI研究的一个目标就是用机器智能模拟人的智能,它选择各种能反映人的智能特征的问题进行实践,希望能做出各种具有智能特征的软件系统。AI研究基于计算途径,因此要建立具有可操作性的符号模型。一般而言,AI关于智能系统的符号模型可描述为:由一个知识载体(称为知识库KB)和一组加载在KB上的足以产生智能行为的过程(称为问题求解器PS)构成。经过20世纪70年代包括专家系统的发展,AI研究者逐步取得共识,认识到知识在智能系统中力量,即一般的智能系统事实上是一种基于知识的系统,而知识包括专门性知识和常识性知识,前者亦可看做是某一领域内专家的常识。于是,常识问题就成为AI研究的一个核心问题,它包括两个方面:常识表示和常识推理,即如何在人工智能中清晰地表示人类的常识,并运用这些常识去进行符合人类行为的推理。显然,如此建立的常识知识库可能包含矛盾,是不协调的,但这种矛盾或不协调应不至于影响到进行合理的推理行为;常识推理还是一种非单调推理,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论;常识推理也是一种可能出错的不精确的推理模式,是在容许有错误知识的情况下进行的推理,简称容错推理。而经典逻辑拒斥任何矛盾,容许从矛盾推出一切命题;并且它是单调的,即承认如下的推理模式:如果p?r,则pùq?r;或者说,任一理论的定理属于该理论之任一扩张的定理集。因此,在处理常识表示和常识推理时,经典逻辑应该受到限制和修正,并发展出某些非经典的逻辑,如次协调逻辑、非单调逻辑、容错推理等。有人指出,常识推理的逻辑是次协调逻辑和非单调逻辑的某种结合物,而后者又可看做是对容错推理的简单且基本的情形的一种形式化。
(科教范文网http://fw.ΝsΕΑc.com编辑) “次协调逻辑”(Paraconsistent Logic)是由普里斯特、达·科斯塔等人在对悖论的研究中发展出来的,其基本想法是:当在一个理论中发现难以克服的矛盾或悖论时,与其徒劳地想尽各种办法去排除或防范它们,不如干脆让它们留在理论体系内,但把它们“圈禁”起来,不让它们任意扩散,以免使我们所创立或研究的理论成为“不足道”的。于是,在次协调逻辑中,能够容纳有意义、有价值的“真矛盾”,但这些矛盾并不能使系统推出一切,导致自毁。因此,这一新逻辑具有一种次于经典逻辑但又远远高于完全不协调系统的协调性。次协调逻辑家们认为,如果在一理论T中,一语句A及其否定?A都是定理,则T是不协调的;否则,称T是协调的。如果T所使用的逻辑含有从互相否定的两公式可推出一切公式的规则或推理,则不协调的T也是不足道的(trivial)。因此,通常以经典逻辑为基础的理论,如果它是不协调的,那它一定也是不足道的。这一现象表明,经典逻辑虽可用于研究协调的理论,但不适用于研究不协调但又足道的理论。达·科斯塔在20世纪60年代构造了一系列次协调逻辑系统Cn(1≤n≤w),以用作不协调而又足道的理论的逻辑工具。对次协调逻辑系统Cn的特征性描述包括下述命题:(i)矛盾律?(Aù?A)不普遍有效;(ii)从两个相互否定的公式A和?A推不出任意公式;即是说,矛盾不会在系统中任意扩散,矛盾不等于灾难。(iii)应当容纳与(i)和(ii)相容的大多数经典逻辑的推理模式和规则。这里,(i)和(ii)表明了对矛盾的一种相对宽容的态度,(iii)则表明次协调逻辑对于经典逻辑仍有一定的继承性。