多主体认知系统中的互知推理(2)
2016-04-18 01:20
导读:如果这个主体知道这个可能世界中某个事件的矛盾事件。)这里,我们进一步规定R[,i]是同时满足自返、对称和传递关系的等价关系,这样,如果主体i在可
如果这个主体知道这个可能世界中某个事件的矛盾事件。)这里,我们进一步规定R[,i]是同时满足自返、对称和传递关系的等价关系,这样,如果主体i在可能世界w[,j]中觉得w[,k]是可能的,这说明在可能世界w[,j]和w[,k]中,主体i具有对外部世界同样的信息,从而对他来说,这两个世界是无法区分的。因此,w[,j]R[,i]w[,k]也表述为“主体i无法区分w[,j]和w[,k]”。
一个公式A在一个结构(模型)M的一个给定的可能世界w[,i]中真,记作附图
附图
上述模型所表达的核心意思是:主体i知道p,当且仅当p在主体i认为可能的所有可能世界中都真。我们用一个实例的图示来描述这一点,克里普克结构的优点之一是可图示的。
附图
上图所示的模型M=(W,V,R[,1],R),其中,W={w[,1],w[,2],w[,3]},p在w[,1]和w[,3]中真,而在w[,2]中假。主体1不能区分w[,1]和w[,2](即主体1在w[,1]认为w[,2]是可能的,由R的对称性,自然在w[,2]同样认为w[,1]是可能的,即w[,1]R[,1]w[,2]和w[,2]R[,1]w[,1]成立),主体2不能区分w[,1]和w[,3]。标有1,2的线段在w[,i](i=1,2,3)从自身指向自身,表示R关系的自返性,即表示w[,i]R[,j]w[,i](i=1,2,3;j=1,2),例如表示w[,3]R[,1]w[,3];标有1的线段的两端指向w[,1]和w[,2],表示主体1不能区分w[,1]和w[,2],并表示R关系的对称性。同样,标有2的线段表示主体2不能区分w[,1]和w[,3]。
令p表示“北京天晴”,则依据上图,可得出以下结论:
结论1。在可能世界w[,1],北京天晴,但主体1并不知道这一点,因为他在w[,1]中认为w[,1]和w[,2]都是可能的(或者说依据他在w[,1]的知识,他无法确定w[,1]和w[,2]究竟哪个是真实世界,即无法区分w[,1]和w[,2]),而p在w[,1]中真,但在w[,2]中假。
(科教作文网http://zw.ΝsΕAc.com发布)
结论2。主体2在可能世界w[,1]知道北京天晴,因为在可能世界w[,1],主体2认为可能的世界是w[,1]和w[,2],在这两个可能世界中,p都是真的。
结论3。主体2在可能世界w[,2]知道并非北京天晴,因为主体2在w[,2]中认为可能的世界只有w[,2]自身,而在w[,2]中,┐p真。同理,主体1在可能世界w[,3]中知道北京天晴。
结论4。在可能世界w[,1],主体1知道主体2知道北京是否天晴,因为在可能世界w[,1],主体1认为可能的两个世界是w[,1]和w[,2],在这两个世界中,主体2都知道北京的天气(见结论2和结论3)。也就是说,虽然在可能世界w[,1],主体1并不知道北京是否天晴,但是他知道主体2知道这一点。
结论5。和结论4成为对比的是,在可能世界w[,1],虽然主体2知道北京天晴(结论2),但是他不知道主体1不知道这一点。因为在可能世界w[,1],主体2认为可能的两个世界是w[,1]和w[,3],在w[,1]中,主体1不知道北京天晴(结论1),但在w[,3]中,主体1知道北京天晴(结论3)。
以上结论,可以用一个逻辑表达式概括:
附图
前面已经指出,一个可能世界是一个事件集,相应的命题在其中真或假。在以上的讨论中,构成w[,1]和w[,3]的事件都是“北京天晴”,因此,似乎是两个相同的世界因而可以略去一个。但事实上却不能这样。因为一个可能世界的规定,不光基于构成它的事件,而且基于主体认为它是否可能。例如,在可能世界w[,1],主体1认为可能世界w[,2]是可能的,但在可能世界w[,2],他却不这么认为,这样,他在w[,1]不知道北京天晴,而在w[,3]则知道这一点。
多主体系统中的共同知识
(科教作文网http://zw.nseAc.com)
在n主体系统中,如果所有的主体都知道所有的主体都知道…(重复≥n遍)A,则称这n个主体掌握了关于A的共同知识,或称A是这n个主体的共同知识。这一多主体认知系统中的重要概念,最早是由路易斯在讨论“协约”时提出的,他认为,某种东西要成为多方的“协约”,必须成为缔约各方的共同知识,也就是说,缔约各方不但都要知道协约的内容,而且要知道各方都知道协约的内容,等等。
为了对共同知识进行形式刻划,需要在语言K中增加新的算子E[,G]和C[,G],满足:如果A是公式,则E[,G]、C[,G]都是公式。
G表示主体集{1,2,…,n}。E[,G]A表示“G中每个主体都知道A”;C[,G]A表示“A是G中所有主体的共同知识”。在不引起歧义的情况下,作为下标的G可以省略,即E[,G]A和C[,G]A分别记为EA和CA。
如果{1,2,…,i}是G的一个真子集(即i表示在{1,2,…,i}中每个主体都知道A。这种写法同样用于C。这样,附图就表示主体3知道p不是主体1和主体2的共同知识。
在模型M中作如下定义:
附图,当且仅当对任一附图,即在可能世界w[,i]中,EA真,当且仅当每个主体都知道A。
令E[1]A表示EA,E[k+1]A表示EE[k]A,则