计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

关于政府采购中供应商的信用分析毕业论文

2015-05-01 01:02
导读:经济论文毕业论文,关于政府采购中供应商的信用分析毕业论文样式参考,免费教你怎么写,格式要求,科教论文网提供大量范文样本: 摘要:支持向量机(SVM)是在结构风险最小化的一种新的机器学习
摘要:支持向量机(SVM)是在结构风险最小化的一种新的机器学习技术,在解决小样本、非线性及高维空间问题中具有独特的优势,适用于政府采购中对供应商进行信用分析。但供应商信用属性数据构成了高维空间的稀疏分布,不利于SVM的准确建模。由于主成分分析技术具有良好的去噪音特性,能够对信用属性数据进行有效地挖掘。因此,若将两者进行有机地结合,就能有效改善SVM输入样本的特性,从而提高SVM分类的准确率。
  关键词:政府采购;信用分析;支持向量机
 
  Abstract:Support Vector Machines (SVM) based on structural risk minimization (SRM) principle is a new machine learning technique and has many advantages in solving small sample size, nonlinear and high dimensional pattern recognition. In this paper, it is applied to the credit scoring prediction of suppliers in the government procurement activities. To get better classification accuracy, PCA(Principal Component Analysis) is combined to SVM to mine the independent attributes of supplier credit.And then, SVM is trained by these independent attributes obtained. By this way, the model of PCA-SVM for credit ananlysis of suppliers in the government procurement activities is builtto evaluate the prediction accuracy of PCA-SVM,while comparing its performance with those of neural networks (NN) and traditional SVM.
  Key words:government procurement;credit analysis; support vector machines
  
   政府采购不同于一般的采购行为,它具有政策性强、规模大、资金多等特点。政府采购项目,尤其是国家重点建设项目,如北京奥体项目、南水北调工程、三峡工程等,更是集政治性、经济性、社会性于一身,对国家的社会效益、政治效益和经济效益都会产生广泛而深远的影响。因此,在政府采购中为避免国家的财税流失、保证政府投资效益,提高政府采购效率,必须规范政府采购市场,促进供应商在市场竞争中遵守国家法律、法规,规范经营,并将对供应商的管理提高到信用管理的高度。
(转载自中国科教评价网www.nseac.com )

  在市场经济环境下,良好的履约能力对政府采购项目按时、保质、保量地完成是十分必要的,而供应商履约能力是与其信用水平密不可分的。因此,在对供应商进行规范化管理过程中,政府部门应对供应商的信用进行公正、客观地分析。这具有很强的理论与现实意义,引发了国内外学者广泛的研究和探讨[ 1-3]。常用的信用分析方法包括层次分析法、模式识别理论和神经网络等。由于信用分析具有多属性和非线性等特征,这些方法在应用中都很难取得满意的效果。
  笔者尝试将数据挖掘技术与机器学习方法相结合,建立基于主成分分析——支持向量机技术的供应商信用分析模型。通过主成分分析技术进行数据挖掘,改善了信用属性数据的特性,提高了支持向量机的建模效率。
  
  一、模型的总体设计
  
  供应商信用分析效果的好坏,主要取决于信用分析中所选用的属性数据的特性以及所采用的方法解决非线性复杂问题的能力。
  当前,商业信用分析主要是通过基于财务指标的信用特征而进行的商业信用等级划分。由于财务属性数据种类繁多,且数据之间往往存在紧密的相关性。这无疑加大了信用分析建模的难度。因此,有必要在进行信用分析之前,对信用属性数据进行数据挖掘。在众多的数据挖掘技术中,主成分分析方法既能够有效去除属性数据间的相关性,又可以降低数据维数。因此,它被选作供应商信用属性数据特征挖掘的工具,以构造新的更有效的信用属性数据。
  数据挖掘后,接着面临的问题是如何有效地构建供应商的信用分析模型。由于在政府采购多采用“短名单”,这就造成了供应商的信用分析具有典型的小样本、多属性及非线性等特征。传统的信用分析方法很难进行有效地分析。神经网络技术虽然能够进行良好的经验学习[ 2],但由于其基于经验风险最小,易出现过拟合问题,从而降低了模型的泛化能力。
上一篇:谈建立我国巨灾保险体制的思考毕业论文 下一篇:没有了