论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
三、培养学生求异思维能力,使他们乐于创新
求异思维要求学生从已知出发,合理想象。找出不同于惯常的思路,寻求变异,伸展扩散的一种活动。教师应注意培养学生熟悉每一个基本概念、基本原理、公理、定理、法则、公式,让学生清楚它们各自的适用性。在具体题目中应引导学生多方位思考,变换角度思维,让学生思路开阔,时刻处于一种跃跃欲试的心理状态。
例:等腰三角形ABCD中,对角线AC、BD交于点O,
且AC⊥BD,AD=3,BC=7,求梯形ABCD的面积。
法一:可作AE⊥BC,垂足分别为E、F得AEFD为矩形。
△ ABE≌△DCF,可求BF长度,又通过三角形全等得
∠1=∠2=45,所以∠3=45°,得DF=BF=5,可求面积。
法二:作DE//AC,交BC延长线于点E,
这样可得△BDE为等腰直角三角形,
取BE中点F,连结DF,据Rt三角形斜边中线
等于斜边一半行DF长度,DF即梯形高,可求面积。
法三:过O点作EF⊥AD,垂足为E,
交BC于F,可证EF⊥BC,据三角形全等得
∠1=∠2,所以OB=OC,OF是等腰三角形
斜边上中线,OF= AD,同理OE= AD求出EF再求面积。
法四:先证∠1=∠2,得△OBC是等腰直角三角形,
可据勾股定理得OA=OD= ,OB=OC= ,
这样S= AC•BD,代入可求值。
分析上面的四种解法后,不妨再问:梯形中常用辅助线作法有作两条高,平移一腰、平移一对角线等等,那么本题平移AB,行不行?
培养学生多方面,多角度地思考问题固然十分重要,因为它可以极大地活跃学生的思维,提高学生创新能力。另外,教师也必须培养学生对多种思路中选择一种易于表达的方法,特别要提高学生的判断、估计能力,避免学生一旦方法选择错误,而不知回头开辟新思路,这样反而对学生的创新积极性受到伤害。
四、加强数学过程的,提高学生的创新能力
传统的数学教学中,往往只重视结论而忽视过程,这样造成学生只懂得死记硬背,遇到问题多采取生搬硬套的作法,学生在听课时看不到数学知识的形成过程。我们要重视定理、公式、法则等的推导过程。如当初家发现该结论时那样既体现各种不同的思路,又分析各种思路正确与否。这样,激发了学生的创造欲望,使他们创新能力获得提高。
(科教范文网 Lw.nsEAc.com编辑整理)
:
陈椿坚 《谈初中学生数学创新能力的培养》[《中学教学参考》(03.11)]
林文凤 《浅谈数学学习兴趣的培养》[《中学数学教学》(03.9)]