计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

学生数学创新能力的培养

2013-05-12 02:16
导读:数学论文毕业论文,学生数学创新能力的培养怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考:  [摘要]在数学教学中,应注重学生创新能力的培养,为学

 [摘要]在数学教学中,应注重学生创新能力的培养,为学生创设的空间,通过培养学生的直觉思维能力和求异思维能力,使学生善于创新,乐于创新。激发学生的创造欲望,从而提高学生的创新意识和创新能力,使学生对知识能够融汇贯通。

 [关键词]创造空间  善于创新  乐于创新 

素质的核心,就是要培养创新型人才。旧的教育模式培养出来的学生只懂死记硬背,不会灵活变通,不善于发展创造。固然学习成绩不凡,可高分低能者多多,后有较大作为的,反而是成绩不那么突出者。传统的教育体制,授学过程、评价机制,都只重视对知识的机械接受而忽视数学能力的培养,这样明显不适应社会的发展了。
如今,竞争普遍存在,不仅是与国家之间,地区与地区之间存在着激烈的竞争,人与人之间何尝不存在着竞争。适者生存“说明一个人要具备一定的应变能力,才能在竞争中处于不败之地”。教育的目的,除了要使学生具有高深的知识外,还应时刻把培养学生的创新意识,提高学生的创造力放在重要的地位。具有创新能力的人才,才是社会主义社会建设所需要的新型人才。数学作为一门比较抽象,注重推理的学科,使得我们更要认真培养学生的创新能力,使学生对知识能够融汇贯通,这样才能有所进步,有所超越。我认为,数学教育要做到以下几点:

一、对症下药,使学生的创新能力有发展的空间

传统的数学习惯于采取“题海战术”,那种不顾学生的心理的作法已起不到良好的效果,只能使学生每天疲于应付高数量的题目,只来得及做,而没有时间思考与,如何能够使学生创新能力得以发挥呢?我们应对学生充分了解,掌握学生的个性特征,精心选择一些能激发学生探索欲望,利于提高学生创新能力的习题和例题。数学不必追求面面俱到,各种题型都让学生 “尝透”,这是不可能的。我们宜注重培养学生举一反三能力,使学生理解能力获得提高,进而提高学生分析问题和解决问题的能力,进而为学生的创新能力的发挥创造了条件。教师要切实做好的工作是“唤醒”学生创造热情,而不是压制和打击,故在教学上应大胆突破,在教与学观念上也有所更新,要改变过去那种唯师为尊的思想和作法。师生之间不妨多探讨少命令,创造一些民主气氛,对学生多鼓励少批评。要创造和谐的师生关系,这样可能缩短师生之间的距离,也使学生乐于听数学课,为今后对学生创新能力的培养准备了开启的钥匙。

二、培养学生的直觉思维能力,使学生善于创新

所谓直觉思维能力,是指不经逐步分析,严密推理与论证,而根据已有的知识迅速对问题的结论作出初步推测的一种思维能力。这种思维的特点是浓缩性与高度跳跃性,受学生所喜爱,它极易创造一种“冒险心理”和“满足感”,因而有利于学生创新能力培养。数学教师在讲解习题和例题时,可选择一些直觉思维与逻辑思维相结合的题目,先让学生凭直觉猜测结论,然后依据逻辑思维给予证明。经过一次次的对比,总结,使学生的猜测一次比一次准确,这样会有利于学生创新能力的发挥。 (转载自中国科教评价网http://www.nseac.com
例如:在Rt△ABC中,∠C=90°,AB=2,求 和 的值。
                                              
分析:本题根据Rt△ABC中,30°
所对的直角边等于斜边的一半,可求出BC=1,用勾股定理可得AB= ,两个比的值求出。
教师可再提问:①若题目中30°条件去掉,能不能求出比值?②若题目中AB=2去掉,能不能求出两比值?
学生的直觉思维就会发生作用了,随着∠A角度的变化,一种可能是∠A=45°,这时∠B=45°,此时△ABC为等腰直角三角形了!学生就会作出猜测,第一种情况无法求出两个比值。在第②题中,AB=2去掉,教师可提问学生这时AB可能有什么情况?当然可能变为大于2或者小于2,再提问学生AB>2时,BC比原来大还是小?AC呢?学生比较容易得出BC、AC都比原来大。这时教师可紧接着问学生:当斜边增大时,另外两条边也相应变大,大家猜测一下,两个比值是如何变化?还是不变?
许多学生根据刚才教师的启发,就会猜测比值不变!这个猜测是对的。在猜测过程中,通过观察,实际图形是“动”起来了。这种猜测在课堂上,学生是乐于接受的,如果掌握得当,所提出的猜测问题会一下子吸引学生的注意力,课堂上会突然十分宁静,那是学生在积极地思索,在进行直觉思维的各种判断。通过这样直觉思维的训练,事后再结合逻辑的证明,无疑会提高学生直觉的正确率,对促进学生创新能力的发挥非常有利。

上一篇:数与代数课堂教学设计——开放式教学的探究 下一篇:没有了