论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
近两年各省市高考数学试卷,遵循高考命题的“三个有利于”和稳定、改革、创新的命题原则,在试题设计上做到“从学科的思维高度和思维价值考虑问题,在知识交汇点设计试题”,用统一的教学观点组织材料,对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情景中去的能力。不同的高卷,表现出一个共同特点,即通过对新颖信息、情景的设问,在知识网络交汇处设计试题,体现了对创新能力的考查,因此,要提高复习的针对性,适应高考创新型试题,必须注意知识在各自过程中的纵向联系以及不同知识部份之间的横向联系,把握结构,理清脉络,十分重视知识网络交汇点和知识块结合部的复习,以提高对高考创新型试题的适应能力。以下对不同知识交汇和结合的情形作一些研究。
1.立体几何与平面解析几何的交汇
在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在04高考卷中已有充分展示,应引起我们在复习中的足够重视。
1.1 空间轨迹
教材中,关于轨迹,多在平面几何与平面解析几何中加以定义,在空间中,只对球面用轨迹定义作了描述。如果我们把平面解析几何中的定点、定直线不局限在同一个平面内,则很地把轨迹从平面延伸到空间。
例1,(04高考重庆理科)若三棱锥A—BCD的侧面ABC内一动点P到平面BCD距离与到棱AB距离相等,则动点P的轨迹与△ABC组成的图形可能是( )
解:设二面角A—BC—D大小为θ,作PR⊥面BCD,R为垂足,PQ⊥BC于Q,PT⊥AB于T,则∠PQR=θ,且由条件PT=PR=PQ·sinθ,∴为小于1的常数,故轨迹图形应选(D)。
例2,已知边长为1的正方体ABCD—A1B1C1D1,在正方体表面上距A为 (在空间)的点的轨迹是正方体表面上的一条曲线,求这条曲线的长度。
解:此问题的实质是以A为球心、 为半径的球在正方体ABCD—A1B1C1D1,各个面上交线的长度,正方体的各个面根据与球心位置关系分成二类:ABCD,AA1DD1,AA1BB1为过球心的截面,截痕为大圆弧,各弧圆心角为,A1B1C1D1,B1BCC1,D1DCC1为与球心距离为1的截面,截痕为小圆弧,由于截面圆半径为,故各段弧圆心角为 ,∴这条曲线长度为。
1.2 平面几何的定理在立体几何中类比
高考考纲对考生思维能力中明确要求“会对问题或资料进行观察、比较、分析、综合、抽象与概括,会用演绎、归纳和类比进行推理,能合乎逻辑地、准确地进行表述”,类比推理可考查考生利用旧知进行知识迁移、组合和融汇的能力,是一种较好地考查创新能力的形式,平面几何到立体几何的类比,材料丰富,操作性强,在历年高考中均有不俗表现。
例3,(04高考广东卷题15)由图(1)有面积关系:,则由图(2)有体积关系 (答案:)
(科教作文网http://zw.NSEaC.com编辑发布)
评注:数学结论的类比既需要数学直觉,也需要逻辑推理能力,它是高考考查创新能力的重要载体,从平面几何到立体几何的结论类比,更是这一类考题蕴藏丰富的宝库,从三角形到三棱锥,从正方形到正方体,从圆到球等等,如果我们稍加留意,就会有很多收获。
1.3 几何体的截痕
例:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab,其中a,b为长、短半轴长)。
解:由于太阳光线可认定为平行光线,故广告球的投影
椭园等价于以广告球直径为直径的圆柱截面椭园:此时
b=R,a==2R,∴离心率 ,
投影面积S=πab=π·k·2R=2πR2=18π。
评注:囿于空间想象能力的限制,几何体的截痕和投影是立体几何中的一个难点,也是具,有良好区分度的考题素材,因此有必要适当进行相应的训练,才能形成基本的解题策略。
1.4 几何体的展开
例:有一半径为R的圆柱,被与轴成45°角平面相截得“三角”圆柱ABC,则此“三角”圆柱的展开图为( )
解:设圆柱底面中心O,底面圆周上任一点P',过P'的圆柱母线与截口交点为P,
∠AOP'=θ,则∵∠CBA=45°,作P'Q⊥AB于Q,∴|PP'|=|AC|-|AQ|=2R-(R-Rcosθ)=R(1+cosθ),AP'=Rθ。
∴在柱面展开图中,以AB直线为x轴,AC为y轴建立直角坐标系,相应点P坐标为(x,y),则有消去得 ,展开图轮廓线为余弦曲线, 故应选(D)
评注:几何体与其展开图,包含了平面与空间的大量信息,需要较强的空间想象能力,要进行点与对应点,线段与对应线段的位置与数量的细致分析,需找出变与不变量以及变化,因此,它是代数与几何、空间与平面的重要知识交汇点。
2.概率与数列的交汇
数列是以正整数n为自变量的函数,而n次独立重复试验中事件A出现k次的概率Pn(k)也是自然数n,k的函数,借助于自然数这一纽带,可实现数列与概率的交汇。
例4:质点从原点O出发,在数轴上向右运动,且遵循以下运动规律:质点向右移动一个单位的概率为,右移2个单位的概率为,设质点运动到点(n,0)的概率为Pn。
①求P1和P2。
②求证{Pn-Pn-1}是等比数列。
③求Pn。
解:①P1= ,
②由题意可知,质点到达点(n,0),可分两种情形,由点(n-1,0)右移1个单位或由点(n-2,0)右移2个单位,故由条件可知:(n≥3)
评注:本题解题关键是数列的递归规律,建立概率数列的递推公式,用数列知识解题,这种复杂的系列问题通过撷取其片段,解剖其规律,是破解难题的常用手段。
3.向量与三角、几何的交汇
向量既有长度,又有方向,因此,向量蕴含长度和角度,因此,以几何、三角为背景的问题便可成为产生向量问题良好温床。
例5:(04高考湖北卷19)如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以A为中点,问和夹角取何值时, 的值最大?并求出这个最大值。
评注:本题为用向量形式表现的几何最值问题,具有较强的综合性,适时建立坐标系,利用向量的坐标形式,最终转化为三角函数,大大降低了解题的难度。同时,也对相关知识的化归能力提出了较高要求。
4.向量与立体几何的交汇
在最新版部编教材中,向量的内容有所加强,特别在平面向量的运算规律和平面向量基本定理进一步扩充到空间中,向量的工具性地位更加突出,因此,用向量解立体几何问题也不应局限在建立空间直角坐标系,用空间坐标运算来解决问题,而应着眼于向量的本质内容。
例6:已知平行六面体ABCD—A1B1C1D1各棱长均为1,
且棱AA1,AD,AB两两成60°角,E,F分别为
A1D1和B1B中点,求EF的长。
评注:本题新颖之处在于向量与立体几何的结合,并不只是建立空间直角坐标系,转化为坐标向量来解题。对于那种不方便建立空间直角坐标系的问题,如斜棱柱斜棱锥等可直接利用空间向量的运算性质解题。