计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

如何培养数学应用的能力(2)

2013-06-30 01:00
导读:在兴趣小组活动中,向学生生动的讲述一些数学史,使学生在陶醉于我们祖先的伟大成就而深感自豪的同时,激发他们对数学的占有的想往。例如,介绍中

在兴趣小组活动中,向学生生动的讲述一些数学史,使学生在陶醉于我们祖先的伟大成就而深感自豪的同时,激发他们对数学的占有的想往。例如,介绍中国是最早使用负数的国家;古巴比伦人遗留下来的平方数表;中国数学的世界之最;关于勾股定理的发现等等。这些数学史话适时地讲解给学生听,能引起他们对数学的很大兴趣。而数学家们的轶事则不仅能引起学生的兴趣更能使他们从中学到数学家们的治学精神。
祖冲之这位从5世纪至15世纪,世界上最具数学才能的数学家的故事当然一定要向同学们介绍。因为在千年之中,祖冲之一直保持着π七位小数近似值的记录。他在数学,天文历法上的伟大成就以及他勇于革新,敢于坚持真理的大无畏精神受到中国和世界各国科学界的高度评价,受到广大人民群众的无比崇敬。
陈景润一生的梦想与事业是攻克哥德巴赫猜想。那么什么是哥德巴赫猜想?数学家哥德巴赫在研究中发现:大于6的偶数可以写成两个质数的和的形式。如6=3+3,8=3+5,10=3+7,12=5+7,……人们验证了许许多多的偶数,结论都成立。但数字是无穷无尽的,大偶数这个结论成立吗?陈景润用了一生的热情去解决这个问题。他的研究把问题的解决推倒了最边沿。遗憾的是,他也未能彻底给出证明,留给我们或我们的后辈去解决了。陈景润为攻克这个世界难题,草稿就写了好几麻袋,我们应该学习他这种勇攀高峰的精神!

约公元500年的《希腊诗人选》里,收录了丢番图奇特的墓志铭:
坟中安葬着丢番图,
多么令人惊讶,
它忠实地记录了所经历的道路。
上帝给予的童年占六分之一,
又过十二分之一两颊长胡。
再过七分之一点燃起结婚的蜡烛。
五年之后天赐贵子。 (科教作文网http://zw.NSEaC.com编辑发布)
可怜迟到的宝贝儿,
享年仅及其父之半,便过早进入坟墓。
悲伤只有用数论的研究去弥补,
又过四年他也走完了人生的旅途。
通过墓志铭我们知道了丢番图的一生,那么他究尽活了几岁呢?
    有趣的是,古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱里内切着一个球,这个球的直径恰好与圆柱的高相等。这个图形表达了阿基米德的发明:“球的体积和表面积都等于它的外接圆柱体积和表面积的三分之二。”不信你算算。
    象这样古今中外的数学家的奇闻轶事可谓数不胜数。只要结合初中教材,根据学生所学内容总能找到与教材内容相关联的例子,讲解给同学们。不仅可以培养数学兴趣,而且扩大知识面及提高同学们的数学逻辑思维能力,认知能力和发现推理能力。以上的介绍可以利用教学录像带而不只是教师的叙述,相信效果会更好。
三、介绍数学美,培养数学兴趣。
美是人类创造性实践活动的产物,是人类本质力量的感性显现。通常所说的美以自然美,社会美以及在此基础上的艺术美,科学美的形态而存在。数学美是自然美的客观反映,是科学美的核心。在一些简单的式子中我们可以发现数学美。如12=3×4,56=7×8,12=3+4+5……这些都是数学等式的趣味美。普洛克拉斯早就断言:“哪里有数,哪里就有美。”在一个偏僻的山庄中,一位五年级的小女孩惊喜地在本子上写下了一个等式     (1+2)×3-4=5。这个等式与小姑娘的美丽可谓相得益彰。你也可以发现,关键在于我们要有一颗发现美的眼睛。从古希腊的时代起,对称性就被认为是数学美的一个基本内容。毕达哥拉斯就曾说过:“一切平面图形中最美的是圆形,一切立体图形中最美的是球形。”这正是基于这两种形体在各方向上都是对称的。几何中具有对称性的图性很多,都能给人以一种舒适优美之感。杨辉三角更组成美丽的对称图案。线段的黄金分割很早就引起人们的注意,主要是因为由此而构成的长方形给人们以“匀称美”的感觉。然而数学的发展已经证明,黄金分割及其有关应用具有重要的数学意义,成为初等数学中对称,和谐美的典型例子。简单性也是数学美的一个基本内容。数学理论的迷人之处就是在于能用最简洁的方式揭示现实世界中的量及其关系的规律。正如爱因斯坦所说:“美在本质上终究是简单性。”在介绍数学美时可以充分运用现代化教学媒体让同学在投影片上看到图形的对称美,甚至可以让他们自己动手制作投影胶片,还可以是电脑多媒体软件上利用几何画板,让同学们自己来制作课件,看到图形的翻转,放大缩小,重合等等。从而欣赏数学的趣味美,

上一篇:有关学生数学应用能力培养的重要性和基本途径 下一篇:没有了