计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

初三数学几何定理的运用

2013-06-29 01:28
导读:数学论文毕业论文,初三数学几何定理的运用怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考: 摘要:教师在教学时经常需要面对不同的学生,如何根据不同

摘要:教师在教学时经常需要面对不同的学生,如何根据不同的情况采取相应的措施显得非常必要。一些学生到了初三仍对几何证明题书写感到困难,思考时没有明确的目的。本文针对这些情况,充分重视了“定理教学”,采取了先集中讲授再平时渗透的方法,提出了从定理的基本要求出发,通过建立表象、组合定理、联想定理等教学对策,从而使学生具备“用定理”的意识。

关键词:建立表象、组合定理、联想定理

教师在教途上并不是一帆风顺的,尤其在农村中学,有时由于教学上的需要,往往到了初三,也会出现面对陌生学生的情况。笔者今年就遇到了尴尬:几何证明题学生会证的,却不会书写或书写不完整;知道步骤的原因和结论,但讲不出定理的内容;更多的学生面对几何题在证明时凭感觉。面对着时间紧、任务重,怎么办呢?经过一番苦思冥想,针对学生基础差、底子薄,决定狠抓“定理教学”。通过一段时间的复习,学生普遍反映在证题和书写时有了“依靠”,也发现了定理的价值,基本树立了“用定理”的意识。
那么,学生在证题时到底是由哪些原因造成思维受阻,产生解题的困惑呢?我们把它归纳为以下几点:
⑴不理解定理是进行推理的依据。其实如果我们把一道完整的几何证明题的过程进行分解,发现它的骨干是由一个一个定理组成的。而学生书写的不完整、不严密,就因为缺乏对定理必要的理解,不会用符号语言表达,从而不能严谨推理,造成几何定理无法具体运用到习题中去。
⑵找不到运用定理所需的条件,或者在几何图形中找不出定理所对应的基本图形。具体表现在不熟悉图形和定理之间的联系,思考时把定理和图形分割开来。对于定理或图形的变式不理解,图形稍作改变(或不是标准形),学生就难以思考。

(科教范文网http://fw.ΝsΕΑc.com编辑)

⑶推理过程因果关系模糊不清。
针对以上的原因,我们在教学中采取了一些自救对策。

一、教学环节
对几何定理的教学,我们在集中讲授时分5个环节。第1、2 环节是理解定理的基本要求;第3 环节是基本推理模式,第4 环节是定理在推理过程中的呈现方式,提出了“模式+定理”的书写方法;第5 环节是定理在解题分析时的导向作用,提出了“图形+定理”的思考方法。程序图设计如下:
基本要求 →  重新建立表象 →推理模式 → 组合定理 → 联想定理

二、操作分析和说明
⒈  定理的基本要求
我们认为,能正确书写证明过程的前提是学会对几何定理的书写,因为几何定理的符号语言是证明过程中的基本单位。因而在教学中我们采取了“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求,并重新整理了初中阶段的定理(见附页,此只列出与本文有关的定理),集中展示给学生。
例如定理43:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
一划:就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分。
           如:“直角三角形”和“高线”、“相似”。
二画:就是依据定理的内容,能画出所对应的基本图形。
    如:                                                                            

(科教作文网http://zw.ΝsΕac.cOM编辑)

三写:就是在分清题设和结论的基础上,能用符号语言表达 ,允许采用等同条件。
如:∵△ABC是Rt△,CD⊥AB于D(条件也可写成:∠ACB=90°,∠CDB=90°等)     ∴△ACD∽△BCD∽△ABC   。
学生在书写时果然出现了一些问题:
①不理解每个定理的条件和结论。学生在书写时往往漏掉条件(如定理19漏掉垂直,定理46漏掉高、中线等);对条件太简单的不会写(如定理3);或者把条件当成结论(如定理12把三线都当成结论)。
②还表现在思维偏差。我们的要求是会用定理,而有些学生把定理重新证明一遍(如定理5、6);或者在一个定理中出现 ∵××,又∵××,∴××的错误。
③更多的是没有抓住本质。具体表现在把非本质的条件当成本质条件(如定理7出现 ∵∠1 和∠2是同位角,∴AB∥CD);条件重复(如定理49,结论∠APO=∠BPO已经包括过圆心O,学生在条件中还加以说明);图形过于特殊(如把定理1的图画成射影定理的基本图形);文字过多(一些定理译不出符号语言,用文字代替)等。
⒉  重新建立表象
从具体到抽象,由感性到理性已成为广大数学教师传授知识的重要原则。“表象”就是人们对过去感知过的客观世界中的对象或对象在头脑中留下来的可以再现出来的形象,具有一定的鲜明性、具体性、概括性和抽象性。由于几何的每一个定理都对应着一个图形,
上一篇:数学课堂探究性学习问题设计 下一篇:没有了