论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
费马在数学方面作出了卓越的贡献,早年主要研究概率论,对于数论和解析几何都有深入研究。他对微分思想的运用比牛顿和莱布尼兹还要早,在他所著《求最大值和最小值的方法》一书中,已对微分理论进行了比较系统的探讨。他把直线平面坐标应用于几何学也早于笛卡儿,在其所著〈平面及空间位置理论的导言〉中,最早提出了一次方程代表直线,二次方程代表截线,对一次与二次方程的一般形式,也进行了研究。费马还研究了对方程ax2+1=Y2整数解的问题。得出了求导数所有约数的系统方法。
著名的费马大定理是费马提出的至今尚未解决的问题。1637年费马提出:“不可能把一个整数的立方表示成两个立方的和,把一个四次方幂表示成两个四次方幂的和,一般地,不可能把任一个次数大于2的方幂表示成两个同方幂的和。”1665年这一定理提出后,引起了许多著名数学家的关注,至今尚在研究如何证明它的成立,但始终毫无结果。
费马在光学方面,确立了几何光学的重要原理,命名为费马原理。这一原理是几何光学的最重要基本理论之一,对于笛卡儿的“光在密媒质中比在疏媒质中传播要快”的观点给予了有力的反驳,把几何光学的发展推向了新的阶段。
几何光学已有悠久的发展历史。公元前400年,我国《墨经》中便有光的直线传播和各种面镜对光的反射的记载。公元100年亚历山大里亚的希罗(Hero)曾提出过光在两点之间走最短路程的看法。托勒密在公元130年对光的折射进行过研究。公元1611年开普勒对光学的研究达到了较高的定量程度。最后,1621年斯涅尔总结出了光的折射定律。费马则是用数学方法证明了折射定律的主要学者之一。 本文来自中国科教评价网
费马原理是根据经济原则提出的,它指出:光沿着所需时间为极值的路径传播。可以理解为,光在空间沿着光程为极值的路传播,即沿光程为最小、最大或常量路径传播。
费马定理不但是正确的,同时它与光的反射定律和折射定律具有同等的意义。由于费马原理的确立,几何光学发展到了较为完善的程度。
费马(Pierre de Fermat,1601--1665)法国数学家、物理学家。生于博蒙德罗曼。其父曾任法国图卢兹地方法院的法律顾问。本人身为律师,曾任图卢兹议会的顾问30多年。他的一系列重要科学研究成果,都是利用业余时间完成的。