计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

暖春数学知识的特征与学习方式的有效选择(1)(2)

2017-12-11 05:53
导读:比如,对于数的运算律的学习。自然数、分数乘法的交换律较为直观,可以通过画图、举例来说明。当然,这种直观的说明具有相当的深刻性。2×3=3×2,
比如,对于数的运算律的学习。自然数、分数乘法的交换律较为直观,可以通过画图、举例来说明。当然,这种直观的说明具有相当的深刻性。2×3=3×2,3×4=4×3,让学生感受一下,便可得出:a×b=b×a。这只是感受一下,只是一个猜想,而不是自己的发现、创造,也不是证明。有理数乘法的交换律更像一种规定性的东西。规定的合理性源于“运算律的承袭性”。自然数的乘法、分数的乘法、小数的乘法都满足交换律,于是,为了保持运算律的承袭性,有理数的乘法也满足交换律。在实数范围内,由于出现了无理数,想通过例子直观感受一下实数乘法的交换律就较难了。初中数学教材中的处理是一笔带过:在实数范围内,加法、乘法的交换律、结合律,乘法对加法的分配律仍然是成立的。 陈省身先生曾说:“数学的主要方法是逻辑推理,因之,建立了一个坚固的思想结构。”①如此,中小学数学教学为何不追求严密的逻辑推理呢?如果遵循逻辑推理的要求,就要从匹亚诺公理系统和自然数乘法的定义出发,对自然数乘法的交换律进行证明。而证明实数乘法的交换律需要用到有理数的基本序列、极限等知识。这样的严密逻辑推理,谁能受得了。因而,相对于学生的认知水平,这些知识无需证明,也不可能证明。对于小学生而言,2×3=3×2,举个例子就行了。 “符号法则不能证明。人们只关心这个法则在逻辑上是否允许。这些法则是任意的,取决于使用上的方便,例如受承袭性原则的制约。我请求你们一般地不要把不可能的证明讲得似乎成立。大家应该用简单的例子使学生相信,或有可能的话,让他们自己弄清楚。从实际情况看,承袭性原则所包含的这些约定关系,恰好是适当的,因为可以得到一致方便的算法。”[2]正因为如此,举个例子来说明问题,只是为了让学生更好地理解、接受某些知识,充其量只是一种合情推理,并非是证明,也不是探究。教材中的这种处理符合儿童的认知规律,也符合这些知识产生的实际。对教学而言,关键在于如何结合不同年龄阶段学生的特征,依据学生原有的知识基础,进行解释性的阐述。事实上,长期的教学实践也是这样做的,并没有什么不好。 既然有些数学知识不可能证明,也不宜证明,在初步理解的基础上,先接受下来,到知识有了一定的积累、认知水平有了一定的提高后,再进行证明,亦是合乎情理的。比如,对几何的学习,开始的时候,可以画一画,量一量,感受一下“三角形的内角和是180°”。这与学生的经验较为贴近,也较为直观。但是,到了初中阶段,必须让学生体会证明的必要性,进而让他们学习演绎证明。否则,学生就只会停留在“测一测,量一量”的状态。随着学习的深入,学生能够用逻辑的方法加以证明,这亦是学习数学的基本要求。共2页: 1 [2] 下一页 论文出处(作者): (转载自科教范文网http://fw.nseac.com)
发挥多媒体优势优化英语课堂教学
思想政治课教学收尾艺术探求
上一篇:小学语文实践活动现状和思考(1) 下一篇:没有了