计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

高中学生的数学思维障碍的成因及突破(1)(2)

2018-03-14 06:49
导读:例:已知实数x、y满足 ,则点P(x , y)所对应的轨迹为( )(A)圆 (B)椭圆 (C)双曲线 (D)抛物线。在复习圆锥曲线时,我拿出这个问题后,学生一着手就简化

例:已知实数x、y满足 ,则点P(x , y)所对应的轨迹为( )(A)圆 (B)椭圆 (C)双曲线 (D)抛物线。在复习圆锥曲线时,我拿出这个问题后,学生一着手就简化方程,化简了半天还看不出结果就再找自己运算中的错误(怀疑自己算错),而不去仔细研究此式的结构 进而可以看出点P到点(1,3)及直线x+y+1=0的距离相等,从而其轨迹为抛物线。
2.数学思维的差异性:由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。如非负实数x,y满足x+2y=1,求x2+y2的最大、最小值。在解决这个问题时,如对x、y的范围没有足够的认识(0≤x≤1,0≤y≤1/2),那么就容易产生错误。另一方面学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。如函数y= f (x)满足f(2+x)=f(2-x)对任意实数x都成立,证明函数y=f(x)的图象关于直线x=2对称.对于这个问题,一些基础好的同学都不大会做(主要反映写不清楚),我就动员学生看书,在函数这一章节中找相关的内容看,待看完奇、偶函数、反函数与原函数的图象对称性之后,学生也就能较顺利的解决这一问题了。3.数学思维定势的消极性:由于高中学生已经有相当丰富的解题经验,因此,有些学生往往对自己的某些想法深信不疑,很难使其放弃一些陈旧的解题经验,思维陷入僵化状态,不能根据新的问题的特点作出灵活的反应,常常阻抑更合理有效的思维甚至造成歪曲的认识。如:z∈c,则复数方程 所表示的轨迹是什么?可能会有不少学生不假思索的回答是椭圆,理由是根据椭圆的定义。又如刚学立体几何时,一提到两直线垂直,学生马上意识到这两直线必相交,从而造成错误的认识。
由此可见,学生数学思维障碍的形成,不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重突破学生的数学思维障碍就显得尤为重要。共2页: 1 [2] 下一页 论文出处(作者):
基于网络环境下《三角函数的图像和性质》课堂教学的探讨
浅谈多媒体信息技术在数学课堂教学中的作用
上一篇:中学政治课“参与──发展”教学模式的构建与 下一篇:没有了