计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

人脸检测算法中对肤色分割效果的加强

2014-03-29 01:05
导读:通信工程论文毕业论文,人脸检测算法中对肤色分割效果的加强论文模板,格式要求,科教论文网免费提供指导材料: 全部作者: 樊宁

全部作者: 樊宁 第1作者单位: 北京邮电大学电信工程学院 摘要: 本文介绍了基于肤色的人脸检测算法的原理与系统构成。实验采用了Anil K.Jain等人在YCbCr色彩空间上所建立的肤色模型,根据其在色度平面上的聚类结果,对待检图像进行肤色分割。此外提出在肤色分割前对图像光度进行高频提升滤波预处理步骤。该举有效摒除了与皮肤色泽相近的背景物体的干扰,加强了肤色分割效果,提高了最终的检测准确率。 关键词: 肤色分割;人脸检测算法;高频提升滤波 (浏览全文) 发表日期: 2008年01月11日 同行评议:

本文主要贡献在于:在肤色分割前对光度进行了滤波预处理,该步骤可以提高最终的检测准确率。文章表述较为清晰,但在实验部分建议以下修改:1)经滤波后图像检测的准确度为93.7%,那么未经预处理的图像检测的准确度为多少?虽然从视觉上,图1和图2在分割效果上存在着较大的差异,但通过ababoost算法进行检测,是不是仍然存在较大的差异?2)图1和图2应该改为彩色显示。文中说图1中的红色砖墙背景在图2中被清除。1个疑问是为什么红色砖墙会被误识为人脸,在训练时,人脸的采样中是否存在红色样本?还是由于光照的影响导致的结果,但是文中说明训练样本为自然光线下获取。3)实验样本来源如何?有没有考虑到人脸色彩在不同种族上的差异。另外训练样本是如何获取的?也是HHI中的137图像吗?另外测试样本和训练样本有没有存在重叠?4)文章中说8幅漏检的图像均为倾角70度以上的侧面人脸,那么漏检的原因是不是因为adaboost算法的局限性?还是由于分割算法的问题?因为根据颜色进行分割的算法应该和人脸的角度没有关系的。希望能够增加漏检的图像样本,作为图例。5)文章所有的参考文献都为2002年及之前,建议加入近几年国内外最新的研究工作综述,并且建议同至少1个近3年内该领域的分割算法进行实验效果比较,以增强算法的说服力。

综合评价: 修改稿: 注:同行评议是由特聘的同行专家给出的评审意见,综合评价是综合专家对各要素的评议得出的数值,以1至5颗星显示。

    上一篇:基于嵌入式系统的视频监控系统实现 下一篇:没有了