计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

时间间隔分析仪研究毕业论文(2)

2014-10-20 01:14
导读:3.主要关键技术 3.1无间隔测量技术 为解释无间隔测量技术的优点,我们使用对简单的稳态正弦信号(图2)进行采样来比较传统的交互式计数器和无间隔计


3.主要关键技术

3.1无间隔测量技术
为解释无间隔测量技术的优点,我们使用对简单的稳态正弦信号(图2)进行采样来比较传统的交互式计数器和无间隔计数器。
交互式计数器打开测量闸门,记录事件计数和时间计数,接着在事先设定的闸门时间(终止采样)之后关闭测量闸门,再次记录事件计数和时间计数(图2)。测量在终止采样点完成,使用下面的频率估计方法来计算频率。
交互计数器简单地测量了在规定时间内有多少个信号周期出现,测量闸门与被测信号同步。这就允许事件计数是一个整数,测量误差完全由量化时间计数过程中的误差所引起。
频率结果以数字形式呈现给用户,另一次测量又开始了。很清楚的可以看到这种技术有固有的空载时间(dead-time),在此期间,信号的变化不能被包含在平均值中,空载时间标在图2中。该过程出现时,不能进行测量。通常,不同次的测量的误差也是互不相关的。
空载时间不仅中断了对信号的测量,而且也破坏了闸门之间的时序关系。对空载时间的处理,可以使用另一个计数器来测量它,然而这种方法所产生的时间刻度并不是真正意义上的连续,还存在着很小的时间碎片,这种系统误差可以累积到一个很大的值。



重新回到图2,可以看到无间隔计数器的测量是背靠背(back-to-back)进行且仅在最后一个测量值获得后处理测量结果,而不是测量过程与处理过程交叉进行。这种背靠背的测量是无间隔测量的实质,一连串的无间隔测量值称为一个数据块,在一个数据块内不可能丢失信号的任何信息。除了第一次和最后一次测量外,对于每一次的测量,第i次测量的起始采样点与第i-1次的终止采样点是同一个,结果就使得不同次测量的误差总是相关的,这就提高了求平均的性能。在测量的块之间无间隔计数器具有空载时间,在此期间,这些测量值被处理。
(科教论文网 lw.NsEac.com编辑整理)

无间隔测量的频率估值实际上是一连串的估计值,通过下式来计算,类似于传统的估计方式:

信号的任何频率不稳定性被包括在该频率估计数据中。对于稳态信号,给定等效的测量次数,无间隔测量的频率估值也比传统测量的估值更加精确,这是由于无间隔计数没有空载时间。无间隔测量技术能够求更多测量值的平均值,因此能给出单位时间内更高的频率分辨率(数据位),该参数在大多数系统中是很重要的。
图3给出了无间隔计数器的实现方案。


该方案中,第一个M位计数器是一个二进制编码的同步计数器,并且带有M位的数据第M位(最高有效位)用来驱动下一级的低速计数器,该计数器可以是脉动计数器或同步它也具有自己的数据锁存器。
当读命令有效时,它直接锁存M位计数器的计数值。但是,它并不直接激活低速计委存器,而是和第M位触发的单稳产生的脉冲进行与运算。处在脉冲宽度内的读命令无效,计数器的读操作直到脉冲终止才有效。其它的读命令立即激活第二个锁存器。使用R-s自免重复锁存第二个计数器。
由于第二个计数器是由第M位触发的,因此在触发之后将开始动作并且在适当的时间稳定下来。该计数器的读操作将被延迟tr,所以设计了一个由第M位触发的单稳触发器,tI时间内的读操作无效。单稳触发器的脉宽tp设计成大于稳定时间小子信号最

上一篇:视音频素材的编码转换毕业论文 下一篇:没有了