论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
在设计逻辑电路图时,由真值表直接得到的函数往往比较复杂。代数法和卡诺图法等方法对于变量数目较多的逻辑函数则效果不佳,本文介绍一种可以化简复杂逻辑函数的方法──表格法,该方法可以对变量数目较多的逻辑函数也可以进行化简。
2、原理
在介绍化减法之前,先说明三个概念:
蕴涵项──在函数的任何积之和式中,每个乘积项称为该函数的蕴涵项。对应于卡诺图中的任一标1单元(最小项)以及2m个相邻单元所形成的圈都是函数的蕴涵项。
素项──若函数的一个蕴涵项不是该函数中其它蕴涵项的一个子集,则此蕴涵项称为素蕴涵项,简称素项。
实质素项──若函数的一个素项所包含的某一最小项,不包括在该函数的其它任何素项中则此素项称为实质素蕴涵项,简称实质素项。
列表化简法的基本原理是利用逻辑函数的最小项,通过对相邻最小项的合并,消去多余变量因子,获得逻辑函数的最简式的。列表化简法的思路是先找出给定函数F的全部素项,然后找出其中的实质素项;若实质素项不能覆盖F的所有最小项,则进一步找出所需素项,以构成F的最简素项集。
下面用列表化简法将下列函数化简为最简与或表达式。
F(A,B,C,D)=Σ(0,3,4,5,6,7,8,10,11)
3、建立素项表
首先,找出给定函数的全部素项。
(1)先将每个最小项所对应的二进制数按其“1”的个数分组得表1;
表1 最小项
组号
项号
二进制数
0
0
0000
1
4
8
0100
1000
2
3
5
6
10
0011
0101
0110
1010
3
7
11
0111
1011
(2)将表1中的相邻两个组之间二进制数进行比较、合并得到一次化简结果,称为一次乘积项,其项号记为