论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
根据所建立的模型,计算观测孔所在单元的水位,并和实际观测的水位进行对比,从而反求相关水文参数。由于研究区内的观测点较少,本次计算选用兰村水源地代表性水位观测孔S1进行水位拟合,水位拟合曲线见图2。由图可知,观测孔的实测水位和计算水位的变化趋势基本一致。
图2 S1观测孔模型识别阶段水位拟合曲线图
图3 模型验证S1观测孔水位拟合曲线图
本次识别各时段长观孔的水位计算值与实测值的拟合误差(绝对误差)小于0.1m的达到80%,符合识别要求。上述模拟结果表明,正负误差比较均匀,系统稳定性较好,模拟的精度和效果是理想的。
为进一步验证识别后的模型和水文地质参数的可靠性,用校正后的模型及参数组合计算出S1观测点的地下水位,将计算结果与实测水位相比较,对模型进行。根据计算区地下水位观测资料的实际情况,选择2003年7月1日至2003年12月31日期间的水位观测资料对模型进行验证。模型验证阶段的水位拟合结果见图3。
本次检验各时段水位拟合误差小于0.1m达85%,符合验证要求。结果表明通过水文地质条件的概化、边界条件的确定、水文地质参数的选取以及源汇项的处理后,所建的数学模型较好地反映了研究区的水文地质特征,该模型可用于地下水位动态预报。
3.2预测方案与结果分析
(1)模拟方案
为了能模拟二库蓄水以后对兰村水源地的影响,采取了两种模拟方案,即在现状年蓄水位和正常年蓄水位下,预测分析研究区岩溶地下水2010年和2015年的流场变化情况。
表3 模拟方案