惠更斯与概率论的奠基(1)(2)
2015-03-05 01:09
导读:1657 年3 月在最后一次校订时,惠更斯将其论文增加为9 个命题和5 个问题,形成了《论赌博中的计算》的基本构架。惠更斯还将给范·舒藤的一封信作为该文的
1657 年3 月在最后一次校订时,惠更斯将其论文增加为9 个命题和5 个问题,形成了《论赌博中的计算》的基本构架。惠更斯还将给范·舒藤的一封信作为该文的前言,这篇前言形成了全文的思想基础。他在其中明确地提出:“尽管在一个纯粹运气的游戏中结果是不确定的,但一个游戏者或赢或输的可能性却可以确定。”〔1〕可能性用的是“probability”,其意义与今天的概率几无差别。惠更斯的这种思想使得“可能性”成为可以度量、可以计算、具有客观实际意义的概念。信中惠更斯强调了这一新理论的重要性:“我相信,只要仔细研究这个课题,就会发现它不仅与游戏有关,而且蕴含着有趣而深刻的推理原则。”并惋惜地说“, 法国的杰出数学家已经解决了这些问题,无人会把这个发明权授予给我。”其内容被编排在范·舒藤之书的519 - 534 页。该书出版于1657 年9 月,而荷兰文版出版于1660 年,英文版出版于1692 年,德文版出版于1899 年,法文版出版于1920 年,意大利文版出版于1984 年。
二、创立数学期望
《论赌博中的计算》的写作方式很像一篇现代的概率论论文。先从关于公平赌博值的一条公理出发,推导出有关数学期望的三个基本定理,利用这些定理和递推公式,解决了点子问题及其他一些博弈问题。最后提出5 个问题留给读者解答,并仅给出其中的3 个答案。通常所谓惠更斯的14 个命题,指的就是书中3 条定理加上11 个问题。
公理:每个公平博弈的参与者愿意拿出经过计算的公平赌注冒险而不愿拿出更多的数量。即赌徒愿意押的赌注不大于其获得赌金的数学期望数〔2〕。
对这一公理至今仍有争议。所谓公平赌注的数额并不清楚,它受许多因素的影响。但惠更斯由此所得关于数学期望的3 个命题具有重要意义。这是数学期望第一次被提出,由于当时概率的概念还不明确,后被拉普拉斯(P1S1M1de Laplace ,1749 —1827) 用数学期望来定义古典概率。在概率论的现代表述中,概率是基本概念,数学期望则是二级概念,但在历史发展过程中却顺序相反。
(科教论文网 lw.NsEac.com编辑整理) 关于数学期望的三个命题为:
命题1 若在赌博中获得赌金a 和b 的概率相等,则其数学期望值为( a b)P21
命题2 若在赌博中获得赌金a 、b 和c 的概率相等,则其数学期望值为( a b c)P31
命题3 若在赌博中分别以概率p 和q ( p ≥0 , q ≥0 , p q = 1) 获得赌金a 和b ,则获得赌金的数学期望值为pa qb1
这些今天看来都可作为数学期望定义。但对惠更斯来说,必须给出演绎证明,因当时对数学的一种公认处理方法是从尽可能少的公理推导其他内容。惠更斯所给的命题1 证明为:
假设在一公平的赌博中,胜者愿意拿出部分赌金分给输者。若二人的赌注均为x ,胜者给输者的为a ,因而所剩赌金为2 x - a = b ,故x = ( a b)P2。
帕斯卡与费马在通信中所说的“值”等于赌注乘以获胜的概率,因而已于概率无本质区别。而惠更斯在这里将“值”改称为“数学期望”是一个进步(在该书荷兰版中,惠更斯仍沿用“值”的概念) 。
将命题3 推广便得到今日数学期望的定义。因此惠更斯当之无愧是数学期望概念的奠基人。
三、求解点子问题
所谓点子问题是:甲乙二人赌博,其技巧相当,约定谁先胜s 局则获全部赌金。若进行到甲胜s1 局而乙胜s2 局时( s1