计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

关键是创设问题情境——引导学生自主学习的教(2)

2015-03-11 01:04
导读:ァ 案例4 “充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为


  案例4 “充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为结论B,给充分不必要条件、充分必要条件、必要不充分条件、既不充分又不必要条件以十分贴切、形象的诠释,则使学生兴趣盎然,对“充要条件”的概念理解得入木三分.

  1.5 创设新异悬念情境,引导学生自主探究

  案例5 在“抛物线及其标准方程”一节的教学中,引出抛物线定义“平面上与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”之后,设置这样的问题情境:初中已学过的一元二次函数的图象就是抛物线,而今定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在的联系吗?

  此问题问得新奇,问题的结论应该是肯定的,而课本中又无解释,这自然会引起学生探索其中奥秘的欲望.此时,教师注意点拨:我们应该由y=x2入手推导出曲线上的动点到某定点和某定直线的距离相等,即可导出形如动点P(x,y)到定点F(x0,y0)的距离等于动点P(x,y)到定直线l的距离.大家试试看!学生纷纷动笔变形、拚凑,教师巡视后可安排一学生板演并进行讲述:
  x2=y
 荩2+y2=y+y2
 荩2+y2-(1/2)y=y2+(1/2)y
 荩2+(y-1/4)2=(y+1/4)2
 荩剑y+14|.
  
  它表示平面上动点P(x,y)到定点F(0,1/4)的距离正好等于它到直线y=-1/4的距离,完全符合现在的定义.
  
  这个教学环节对训练学生的自主探究能力,无疑是非常珍贵的.

  1.6 创设疑惑陷阱情境,引导学生主动参与讨论
(转载自http://www.NSEAC.com中国科教评价网)


  案例6 双曲线x2/25-y2/144=1上一点P到右焦点的距离是5,则下面结论正确的是(  ).
 A.P到左焦点的距离为8
 B.P到左焦点的距离为15
 C.P到左焦点的距离不确定
 D.这样的点P不存在

  教学时,根据学生平时练习的反馈信息,有意识地出示如下两种错误解法:

  错解1.设双曲线的左、右焦点分别为F1、F2,由双曲线的定义得
ァ。PF1|-|PF2|=±10.
ァ 撸PF2|=5,
ァ 啵PF1|=|PF2|+10=15,故正确的结论为B.

  错解2.设P(x0,y0)为双曲线右支上一点,则
 |PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
ァ 啵PF1|=ex0+a=15,故正确结论为B.

  然后引导学生进行讨论辨析:若|PF2|=5,|PF1|=15,则|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,这与三角形两边之和大于第三边矛盾,可见这样的点P是不存在的.因此,正确的结论应为D.

  进行上述引导,让学生比较定义,找出了产生错误的在原因即是忽视了双曲线定义中的限制条件,所以除了考虑条件||PF1|-|PF2||=2a,还要注意条件a<c和|PF1|+|PF2|≥|F1F2|.

  通过上述问题的辨析,不仅使学生从“陷阱”中跳出来,增强了防御“陷阱”的经验,更主要地是能使学生参与讨论,在讨论中自觉地辨析正误,取得学习的主动权.

  1.7 创设已有知识的问题序列,引导学生自己获取新知识的生长点

  ァ≈链耍学生对“曲线”与“方程”的关系已有了一些初步的认识,在此基础上指导学生阅读课本,学生就能够理解曲线和方程的“纯粹性”及“完备性”的含义,也就理解了什么是“曲线的方程”和“方程的曲线”.

本文来自中国科教评价网


ァ1.8 编拟读书提纲,引导学生阅读自学
上一篇:智能建筑中暖通空调和照明系统控制策略(1) 下一篇:没有了