计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

一种QCM信号在线采集系统的实现

2016-11-21 01:06
导读:理工论文论文,一种QCM信号在线采集系统的实现应该怎么写,有什么格式要求,科教论文网提供的这篇文章是一个很好的范例: 摘要:石英晶体微天平(QCM)信号采集系统的设计质量是影响其
摘要:石英晶体微天平(QCM)信号采集系统的设计质量是影响其测量精度的重要因素。提出了一种QCM信号在线系统的实现方案,给出了系统的结构框图,并对系统电路进行了详细的分析。

QCM(Quartz Crystal Microbalance)是由AT切石英晶体片和镀在其上下表面的金属电极构成的一种谐振式传感器。其结构如图1所示。QCM作为微质量传感器具有结构简单、成本低、振动Q值大、灵敏度高、测量精度可以达到纳克量级的优点,被广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度的检测等。根据需要,还可以在金属电极上有选择地镀膜,进一步拓宽其应用。例如,若在电极表面加一层具有选择性的吸附膜,可用来探测气体的化学成分或监测化学反应的进行情况。因传感器等。随着生物科学的蓬勃发展,QCM作为基因传感器在生物领域的应用有着广阔前景。

在国外,QCM在气相中的应用已经相当成熟,近几年,对液相中的QCM应用的研究也取得了很大进步,并且已经出现了很多商品化的产品,但是它们的价格非常昂贵。国内的相关研究相对较少。本文提出了一种基于DSP的QCM信号在线采集系统。该系统主要由高频信号发生器、QCM传感器和信号采集处理部分组成,结构简单、成本低。借助DSP强大的数字信号处理功能,实现了在线测量,并且保证了较高的测量精度。

1 QCM测量原理

石英是具有压电性质的物质之一,当外加交变电压的频率为某一特定频率时,石英晶片振幅会急剧增加,这就是压电谐振。

1959年Sauerbrey在假定外加持量均匀刚性地附着于QCM的金电极表面的条件下,得出了QCM的谐振频率变化与外加质量成正比的结论。即:

式中,Δf为QCM谐振频率的变化;f0o QCM的基频;c66为石英的辰电强化剪切模量;pq为石英的密度:2.65lg/cm3;A为金电极的面积;Sf为传感器的灵敏度;Δm为电极表面的质量变化。通过(1)式可得到QCM电极表面的质量变化。由于QCM的灵敏度很高,可以达到纳克级,并且结构简单,因此一问世就得到了广泛的应用,如用于真实或空气中膜的厚度检测等。

20世纪90年代以来,随着研究的深入,QCM在液相中也取得了广泛的应用,主要用于生物、化学等领域的检测中。1982年Monura和Okuhara最先提出了可以在液相中驱动QCM振动的电路,将QCM的应用扩大到了液相。1985年Kanazawa和Gordon推出了QCM在牛顿流体中振荡时其谐振频率变化与液体的粘度和密度的关系式,即:

从式(1)、(2)可以看出,QCM谐振频率的变化量Δf是关键的待测量。

2 系统方案

目前驱动QCM振动并采集其输出信号的方法主要有两种:(1)振荡电路法;(2)频谱分析法。振荡电路法的基本原理为:将QCM接入自激振荡电路中,使其构成选频元件,电路的振荡频率等于QCM的谐振频率。通过电路振荡频率的变化可得到QCM谐振频率的变化,从而可推测出待测物质性质的变化。频谱分析法的基本原理为:扫描QCM在其谐振频率附近的一段频率范围内的频谱(幅频和相频特性),通过该频谱可得到QCM的谐振频率、Q值等参数。与振荡电路的方法相比,频谱分析的主要优点有:在大阻尼介质中不会停振、测量结果信息量大、形象直观、计算解释容易。本设计给出了一种基本频谱分析法的QCM信号采集系统。

上一篇:智能延迟触发产生器的设计 下一篇:没有了