计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

浅论投影寻踪法在生态城市评价中的应用

2017-01-30 01:04
导读:理工论文论文,浅论投影寻踪法在生态城市评价中的应用样式参考,免费教你怎么写,格式要求,科教论文网提供的这篇文章不错: 摘要:将一种在在水质评价中得到广泛应用的评价方法——投影

摘要:将一种在在水质评价中得到广泛应用的评价方法——投影寻踪评价法引入生态城市评价领域中。采用基于实数遗传算法的投影寻踪评价法,以生态城市课题组建立的指标体系(指标涉及资源,经济,社会,环境,体制等各方面因素)为基础,利用M棚AB软件对石家庄市2000~~2007年的生态城市建设进行了评价。


关键词:投影寻踪法;生态城市评价;石家庄市


  “生态城市”是20世纪80年代产生的一个全新概念,指将“生态系统”思想引入到城市建设和管理的过程中。它最早是由前苏联生态学家0.Yanitsky1971年在联合国教科文组织发起“人与生物圈计划(MAB)”时提出的。之后,很多学者都对其进行了研究,并给出了定义。如1984年城市生态学家0.Yanistky提出,生态城市是指自然、技术、人文充分融合,物质、能量、信息高效利用,人的创造力和生产力得到最大限度的发挥,居民的身心健康和环境质量得到维护,一种生态、高效、和谐的人类聚居新环境。美国生态学家R.Richard认为,生态城市即生态健康的城市,是低污、紧凑、节能、充满活力并与自然和谐共存的聚居地。虽然生态城市的概念尚处于不停的争论、探索、修改、完善之中,但在原则问题上,人们已经达成一些基本共识:“生态城市”的核心思想是它的区域整体观和可持续发展的生态观,且一般要求具有以下几种特性:和谐性、高效性、持续性、整体性、区域性、结构合理以及关系协调。
  1生态城市测评方法概述
  生态城市评价是生态城市建设的基础工作,一套科学客观的生态城市评价体系应具备以下功能:①帮助在操作层次理解什么是生态城市;②使城市建设转向生态城市建设;③衡量生态城市建设的趋势和速度,综合衡量生态城市各子系统的协调程度。 本文来自中国科教评价网
  具体到测评方法而言,不同的测评方法从不同的角度描述指标体系的属性,由于各种方法的机理不同,方法的层次属性相异,在应用不同的测评方法时,测评的结果也存在差异。因此,要反映一个城市的全貌,体现上述生态城市的内涵要求,必须从多角度、全方位进行研究,这样得出的结论才能体现城市系统的本质和原貌。在数学分析方面,系统科学专家运用定量分析技术开发了几十种测评方法。目前,常用的主要有层次分析法(AnalyticHierarchyProcess,AHP),因子分析法(FactorAnalysis,FA)以及网络层次分析法(ANP)等。但是,这些方法都有其局限性。层次分析法对应生态城市评价是不适用的,因为指标之间是不完备、不互斥的;因子分析法是较常用且简单的方法,能够反映生态城市建设的大概状况,但会丢失部分信息;网络分析法能够比因子分析法更全面地反映生态城市的概况,但其前提是各因子之间的关系比较清晰,这一过程需要作大量的研究工作。该文借鉴在水质评价中得到广泛应用,并被实践证明比较科学、合理的评价方法——投影寻踪评价法,将其应用到生态城市评价体系中。
  2基于实数遗传算法的投影寻踪评价法
  投影寻踪评价方法是针对目前常规的系统综合评价方法的形式化、数学化等局限性,以及对某些高维、非线性、非正态评价问题的适应能力不强等不足之处,提出的一种由样本数据驱动的探索性数据分析方法。该方法的思路是把高维数据通过某种组合投影到低维子空间上,对于投影到的构形,采用投影指标函数(目标函数)来描述投影值暴露原系统综合评价某种分类排序结构的可能性大小,寻找出使投影指标函数达到最优(即能反应高维数据结构或特征)的投影值。然后根据该投影值来分析高维数据的分类结构特征(即寻求投影寻踪聚类评价模型)。其中,投影指标函数的构造及其优化问题是运用投影寻踪方法成功的关键。

本文来自中国科教评价网


  遗传算法是解决函数优化问题的数据挖掘方法。遗传算法源于对生物系统所进行的计算机模拟研究,是Michigan大学的Holland教授及其学生根据生物模拟技术创造出来的自适应概率优化技术。遗传算法通过计算机编码实现模拟生物进化过程中的复制、交叉、变异、显性、倒位等遗传过程,实现系统设计、函数优化等复杂过程。它与传统的算法不同,传统的优化算法是基于1个单一的度量函数(评估函数)的梯度或较高次统计,以产生1个确定性的试验解序列。遗传算法不依赖于梯度信息,而是通过模拟自然进化过程来搜索最优解,它利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。遗传算法是通过有组织、随机的信息交换来重新组合那些适应性好的串,生产新的串的群体。
上一篇:用PROTEL DXP电路板设计的一般原则 下一篇:没有了