论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
随着科学技术的发展,现代设备的结构日趋复杂,其故障类型越来越多,反映故障的状态、特征也相应增加。在实际故障诊断过程中,为了使诊断准确可靠,总要采集尽可能多的样本,以获得足够的故障信息。但样本太多,会占用大量的存储空间和计算时间,太多的特征输入也会引起训练过程耗时费工,甚至妨碍训练网络的收敛,最终影响分类精度。因此要从样本中提取对诊断故障贡献大的有用信息。这一工作就是特征提取。
特征提取就是利用已有特征参数构造一个较低维数的特征空间,将原始特征中蕴含的有用信息映射到少数几个特征上,忽略多余的不相干信息。从数学意义上讲,就是对一个n维向量X=[x1,x2,…,xn]T进行降维,变换为低维向量Y=[y1,y2,…,ym]T,m