计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

农业田间信息获取技术研究及发展趋势文段(2)

2013-07-06 01:18
导读:应用遥感技术可对大面积农作物的长势进行监测,其基本方法是利用覆盖周期短而面积大的NOAA卫星资料,对地面植被吸收的光谱信息和地面实际情况进行

  应用遥感技术可对大面积农作物的长势进行监测,其基本方法是利用覆盖周期短而面积大的NOAA卫星资料,对地面植被吸收的光谱信息和地面实际情况进行分析,并结合常规的方法和资料,建立作物监测模式,用以监测作物长势,发布苗情监测通报,指导农业生产¨ 。国际上,关于农作物生长状况遥感监测与估产有3个标志性的实验计划,即美国的LACIE计划、A—GRISTARS计划和欧盟的MARS计划。1974—1977年,美国农业部(USDA)、国家海洋大气管理局(NOAA)、美国宇航局(NASA)和商业部合作主持了“大面积农作物估产实验”,主要品种是小麦,地区范围是美国、加拿大和前苏联。1980—1986年,执行LACIE计划的几个部门又合作开展了“农业和资源的空间遥感调查计划”,其中包括世界多种农作物长势评估和产量预报。欧盟所属的联合研究中心遥感应用研究所通过实施“遥感农业监测”项目,即MARS计划,也成功地建成了欧盟区的农作物估产系统,并将结果应用于诸如农业补贴与农民申报核查等欧盟的共同农业政策。在农作物长势监测的方法上,国外科学家主要围绕适合大面积监测的NOAA—AVHRR的应用进行了多方面的探索,取得了许多突破进展¨卜”J。我国利用气象卫星监测作物生长状况的研究始于20世纪80年代中期,并应用气象卫星对农作物长势进行宏观监测的理论和方法进行了研究 。
  3.2.1 作物根系信息监测技术作物根系信息基本上是通过图像识别的方法来得到的。例如加拿大产的ET一100根系生态监测系统,运用透明管材埋设在需要研究的根系周围,使用特殊图像捕捉系统对根系照相,然后借助专业根系分析系统对混合图像进行分析,从而跟踪了解其生长过程。 (科教作文网 zw.nseac.com整理)
  这种方法可以非破坏性地动态追踪分析根系形态因子,根系相关数据能够定量化,还可以根据用户需求监测土壤水分状况,从而研究根系所在区域内溶质运移及水分胁迫所引起的生理变化。该方法已广泛应用于园艺植物培养和作物生长模型研究等领域。
  3.2.2 光合作用测定技术光合作用测定的一个例子是用叶室内装备最新的小型红外气体分析传感器(IRGA),测量温度和光合有效辐射(PAR)的传感器接收信号,再用便携式微处理器控制叶室内的二氧化碳和水蒸汽浓度,并测量二氧化碳和水蒸汽交换。CIRAS一1植物光合测定仪根据精密测量叶片表面CO 浓度及水分的变化情况,来考察叶片与植物光合作用相关的参数,用以测量植物叶片的光合速率、蒸腾速率和气孑L导度等与植物光合作用相关的参数。
  3.3 作物营养监测技术叶绿素是吸收光能的物质,对作物的光能利用有直接影响。叶绿素含量和作物的光合能力、发育阶段以及氮素状况有较好的相关性。由于叶绿素之间的含氮量和叶变化趋势相似,通常认为可以通过测定叶绿素来监测植株氮素营养。
  叶绿素的常规测定使用分光光度计法,因为这种方法要进行组织提取和分光光度计的测定,所以既耗时间又对植被造成损伤。另外,从大田到实验室的运输和样本制备过程中很可能损失叶绿素,进而导致叶绿素含量发生变化 。
  目前,应用较多的是一种日本生产的SPAD一502叶绿素仪。这种叶绿素仪的工作原理是采用两个不同波长的光源分别照射植物叶片表面,通过比较穿过叶片的透射光光密度差异而得出SPAD值。因此,SPAD值是一个无量纲的比值,与叶片中的叶绿素含量成正相关。在叶绿素仪应用的研究中,各研究者所采用的测定部位都大体相同,即作物生长前期取新展开的第一片完全展开叶作为测定部位,生长后期则取功能叶(小麦取旗叶和玉米取穗位叶)作为测定部位。

(转载自http://zw.NSEAC.com科教作文网)


  叶绿素仪在玉米株与株之间的测定值可能会相差15% ,在同一片叶上不同位置的测定值也不同。一般认为,距离叶基部55% 处的SPAD测定值较大,且偏差较小,是合适的测试位点。
  便携式高光谱仪是一种非损伤性测定叶绿素的方法,它通过测定绿色植物叶片的反射率、透射率和吸收率来测定叶绿素含量,这决定了高光谱技术在植被叶绿素含量评价研究中具有不可替代的作用。国内外很多学者已经对作物氮元素的高光谱及光谱测量进行了研究,并且各种反射率比值及植被指数用于监测植物的氮素亏缺 1卜 。王人潮等利用叶绿素计和高光谱快速测定了大麦的营养状况,结果表明,可以通过光谱法来测定大麦的氮素水平¨ ;IJi等应用反射光谱检测了茶叶的叶绿素含量 ;方慧等应用光谱技术检测了油菜叶片中叶绿素含量¨ 。光谱监测提供了一种自动、快速和非损伤性的植物营养状态监测方法,并且田问不同处理之间的冠层光谱差异为高光谱和多光谱遥感大面积监测氮素营养提供了可行性。
  3.4 作物冠层多光谱监测技术植物冠层光谱特性是植物光谱特性与背景土壤光谱特性的综合。随着植物冠层的发育,土壤光谱特性的作用逐渐下降;在植物衰老时,土壤背景的作用又逐渐增大。一般叶面积指数(LAI)达到3左右时,冠层在可见光和中红外波段的光谱反射率基本稳定;而在近红外波段,LAI达到5~6时,光谱反射率才能饱和。冠层光谱反射率还受太阳光入射角、双向反射、气溶胶和风速等诸多外部因素的影响。由于植物营养状况能影响叶面积、冠层形态和内在生理特征,而且不同营养元素的影响程度也不同,因此利用冠层光谱分析可以诊断植物营养状况。现代”精细农业”的一个非常重要的技术手段,就是利用遥感技术监测作物的营养状况与长势。与叶片光谱特性一样,氮素营养对冠层光谱特性影响的研究最为系统和深入。

(转载自http://zw.NSEAC.com科教作文网)


  随着氮素营养水平的提高,光谱反射率在可见光和中红外波段降低,而在近红外波段却增加。诊断水稻冠层氮素营养水平的敏感波段为760~900 nm,630~ 690 nm和520~550 nm。不同氮素营养水平下的冠层光谱反射率存在着明显差异,经植被指数转换后差异更为显著与稳定。因此,利用冠层光谱测试可以区分作物的氮素营养水平。
  植物中磷钾营养水平与冠层光谱特性的关系研究较少见。总的来说,磷钾对光谱特性的影响不如氮明显。在水培和砂培条件下,不同磷钾水平的植物冠层光谱反射率存在显著差异,磷钾营养对冠层光谱特性的影响与氮的影响相似。随着磷钾营养水平的提高,可见光波段的光谱反射率下降,而在近红外波段却有明显增加。利用光谱分析,可区分3~5级的磷钾营养水平。在田间条件下,由于磷钾的缺乏不严重,有时结果不太一致。
  还未见报导。由于它们对叶面积、生物量以及叶片叶绿素等生理生化性质的影响与大量元素具有相似性,预计中量及微量元素对冠层光谱特征的影响也具有相似性,但影响程度将会差异较大。

  目前,在国外应用的一种田间便携式分光仪可以方便地检测作物的冠层反射系数。用数学方法将几个波长下得到的反射系数进行合并就可以得到作物的“光谱系数”,或称之为探测值。经过优化的光谱系数在作物的拔节期和抽穗期与作物的供氮状况密切相关。利用这种分光仪探测原理,并加以改进而研制的拖拉机机载探测施肥系统已经很成熟。它通过探测系统将作物冠层信息输入计算机,经处理得出作物的需肥情况,计算机通过协调拖拉机步进速度和DGPS(差分GPS)数据,在考虑探测器间距离和施肥区范围基础上控制施肥操作。

(转载自中国科教评价网www.nseac.com )


  作物冠层反射和土壤背景辐射在红外胶片上为不同的辐射显影。照片经计算机处理后,每个像素的色度变化都可以表示出作物反射光线的情况,而作物反射光线特性的变化正是作物营养变化,特别是氮营养状况发生变化的结果。这样分析作物冠层照片就可以准确地分析作物的氮营养状况。Hansen等用高光谱反射分别对小麦的冠层生物量和氮含量进行了研究 ;Daughtry等通过叶片和冠层反射率来预测玉米叶片的叶绿素含量 ;冯雷等应用多光谱技术检测了油菜叶片中叶绿素含量 J。
  3.5 作物病虫害诊断及杂草识别技术病虫害是影响农作物产量和品质提高的重要因子,及时、准确与有效地检测病虫害的发生时间和发生程度是采取治理措施的基础。
  目前,用雷达监测飞性昆虫、孢子捕捉器监测一些作物病原菌、性信息素诱芯或诱饵监测田间鳞翅目害虫以及灯光诱集飞行趋光性昆虫等,都是利用有害生物的习性开发出的相对省工和省时的监测手段。
  随着遥感和高光谱技术的广泛应用,用光谱和遥感技术来监测作物病虫害的研究也取得了一定的进展。
  北京农业信息技术研究中心采用高光谱遥感监测小麦条锈病、白粉病和蚜虫,以达到大面积、快速、无破坏的病虫害监测和预测预报的目的。美国利用卫星遥感图片分析监测森林舞毒蛾扩散及危害程度,监测草地蝗虫危害等。中国科学院利用综合航空多光谱数字相机成像系统,监测蝗虫及主要棉花害虫。中科院还利用TM图像遥感监测东亚飞蝗的栖息地芦苇的植被指数和监测蝗灾的动态变化。北京农林科学院利用TM卫星图片监测麦蚜对冬小麦的危害。吴迪等应用光谱和多光谱技术对茄子和番茄的灰霉病进行了早期诊断识别 -27]。 (科教范文网http://fw.nseac.com)
  随着人们环境保护意识的提高和对农药残留物的重视,对田间杂草清除的研究也逐渐受到许多学者的重视。杂草一作物区分的研究可分为3种:一是人工区分;二是航空遥感技术;三是光学传感器。人工区分目前是区分作物和土壤背景的最佳方法,但既费时又费力;航空图片虽然可以在短时间内获得作物大范围的图像,但是研究表明杂草密度对图像的可视性有严重的影响 ;基于地面多光谱传感器的研究使得对单种作物一杂草的研究有了进一步的进展 。。。
  Borregaard等研究表明,杂草与作物在几何特征和纹理特征方面的区分率可以达到91%l3 。朱登胜等应用光谱技术结合神经网络模型使作物与杂草的识别率达到100%。
  4 结术语田间信息采集技术的研究是实现数字农业的关键,而数字农业信息获取技术的产生与发展主要依赖于计算机技术、电子技术、卫星导航技术、遥感技术和传感器技术的迅速发展。发达国家以此技术为基础的农业机械已得到了广泛的应用,为我国农业机械现代化进程与农业高新技术的发展提供了可借鉴的思路和经验。数字农业信息获取技术在我国尚处于起步阶段,近几年内的研究也取得了进展。在田间信息采集技术的研究上,应以近中红外分析技术和遥感技术相结合的方法为重点,并加快研究步伐,从而为我国农业数字化进程提供技术支撑和装备。

上一篇:基于以太网鱼雷声自导电信号半实物信息工 下一篇:没有了