计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

持续经营审计判断模型研究:回顾与前瞻(2)

2014-02-27 01:13
导读:随时依据新的数据资料进行自我学习,并调整其内部储存的权重参数。田伟福、周红晓[16]选取了A股30家公司作为样本构建了前向三层BP神经网络模型,模型
随时依据新的数据资料进行自我学习,并调整其内部储存的权重参数。田伟福、周红晓[16]选取了A股30家公司作为样本构建了前向三层BP神经网络模型,模型包括反映偿债能力、资产能力、负债水平、盈利能力及成长能力等12项比率,测试的结果表明神经网络模型预测是否发生持续经营危机的准确性较高。周敏、王新宇[17]对判别分析、Logistic回归和神经网络进行了比较,她们以1999—2001年ST公司和健康公司各73家作为训练样本,以2002年ST公司和健康公司各43家作为样本,分析了15个财务指标,结果表明神经网络的预测效果要优于其他两种方法。



  二、持续经营意见预测模型

  持续经营审计意见预测模型同样按照所用概率方法的不同,可分成多元线性判别模型、多元回归(Logistic)模型、人工神经网络模型、持续经营审计专家系统等4类,模型研究的重点是持续经营审计意见是否可以用公开的信息进行预测。

  (一)多元线性判别模型

  Mutchler[18]选取了1981年被出具持续经营非标准审计意见的119家制造业公司,并选取了119家表现出一些经营困境征兆但却被出具标准审计意见的制造业公司作为参照物,采用多元判别法构建了预测模型,模型使用了Mutchler通过问卷获取的审计师进行持续经营审计判断最关注的8个变量,它们是:(1)经营性现金流量/负债;(2)流动比率;(3)所有者权益/负债;(4)长期负债/总资产;(5)资产负债率;(6)税前净收益/销售收入;(7)有关持续经营不确定性的好消息和坏消息数量;(8)总资产净利润率的变动率。模型对是否被出具持续经营非标准审计意见的预测准确率为82.8%,结果表明持续经营非标准审计意见可以用公开发表的会计信息进行预测。

  (二)多元逻辑回归模型

  Menon、Schwartz[19]以1974—1980年间89家破产公司为样本,其中37家被出具持续经营非标准审计意见。变量选取参照了SASNo.34和前人的研究结果,最终选取了7个变量采用了Logistic回归构建模型,分别是:(1)流动比率;(2)流动比率变动率;(3)留存收益/总资产;(4)资产负债率;(5)总资产净利润率;(6)是否发生持续的经营性亏损;(7)经营性现金流量/总负债,结果表明持续经营非标准审计意见与财务比率显著相关,最重要的解释变量是流动比率的变动率和持续发生经营性亏损。Menon、Schwartz还分别用1981—1983年间破产公司和非破产公司样本对模型的有效性进行了验证,破产公司样本数为39家,其中14家被出具持续经营非标准审计意见。非破产公司样本数为46家,其中11家被出具持续经营非标准审计意见,模型对持续经营非标准审计意见预测的准确率为78%.

  Bell、Tabor[20]发现反映水平比率的财务指标对于持续经营审计意见的预测准确率高于反映趋势比率的财务指标。Chen、Church[21]研究证实在模型中增加反映偿还到期状况的变量可以显著提高模型的预测准确率性。

  Mutchler[18]认为持续经营审计判断可以分成三个阶段:第一阶段是判断被审计单位持续经营能力是否存在重大疑虑;第二阶段是判断被审计单位是否应该被出具持续经营审计意见;第三阶段是应出具何种具体审计意见。Lasalle、Anandarajan和Miller[22]对第三阶段,即持续经营能力存在重大不确定性应出具何种具体审计意见进行了研究。他们收集了183份调查问卷(其中130份问卷的样本公司被出具持续经营强调无保留意见,53份问卷的样本公司被出具持续经营无法表示意见),按照审计意见的具体类型为被解释变量,以亏损持续年数、坏消息和好消息数量、被审计单位规模、内部控制水平、大小、审计任期、会计事务所规模等7个变量为解释变量,采用Logistic回归构建判别模型,模型对两种审计意见鉴别的准确率为83.85%,结果表明两种审计意见类型在持续经营不确定性程度上存在显著差异。

  (三)人工神经网络模型

  Lenard、Alam和Madey[23]选取了1982—1987年被出具持续经营审计意见的40家公司,并选取同时期40家被出具标准审计意见的公司为参照对象,构建了基于GRG2的神经网络模型,模型自主学习采用了8个变量,它们是:(1)经营性现金流量/负债;(2)流动比率;(3)所有者权益/负债;(4)长期负债/总资产;(5)资产负债率;(6)税前净收益/销售收入;(7)总资产净利润率;(8)上一年度是否亏损。神经网络模型对持续经营审计意见的预测准确率达到95%,而基于相同变量的Logistic模型预测的准确率为83%,结果表明人工神经网络模型对持续经营审计意见具有较好的预测能力。

  (四)持续经营审计专家系统

  持续经营审计专家系统是人工智能在持续经营审计判断领域的应用,它将该领域的专家知识经验转化为系统知识库的推理规则,被审计单位所处行业、外部经营、内部管理控制水平、异常事件等难以量化的因素都被加以考虑,并且专家系统具有自主学习知识功能,因此,专家系统能提高审计判断的一致性和可靠性。Biggs、Selfridge和Krupka[24]研究设计了一个GC X持续经营审计专家系统,该系统认为审计师进行持续经营审计判断需要依据三类知识:财务知识、事件知识及程序知识,持续经营危机(体现为异常的财务指标)则是某些具体事件的必然结果。GC X系统通过4个程序对持续经营审计判断提供决策支持作用,这4个程序分别是:持续经营不确定性问题识别、问题缘由的后向推理、对管理层拟采取改善措施的有效性和可行性评估、出具持续经营审计意见。Lenard、Madey和Alam(1998)[25]还将持续经营审计专家系统与一个基于马氏距离的聚类模型相结合构建了一个混合模型,并随机选取了1990年间26家破产公司和26家健康公司,对该混合模型与其他破产预测模型的预测准确率进行了验证,结果显示混合模型的预测准确率达到96.2%.

  三、与评述

  从以上文献的回顾可以看出,国内外审计学界对持续经营审计判断模型进行了大量的研究,有关涉及分类的定量方法在模型构建中得到了大量应用。这些模型的研究在总体方向上呈现出两个发展趋势:一方面,从仅考虑财务指标扩展到综合考虑财务、经营、股票市场表现、管理能力等因素,从定量分析向定性与定量分析相结合的方向发展;另一方面,从线性统计方法向更符合实际的非线性预测方法发展。尽管这些模型被证实在预测持续经营危机方面具有较高的准确性,但以下几个方面的问题仍有待于进一步研究和探讨:

  (一)对持续经营危机的定义

  对持续经营危机的定义在学术界尚未形成一致的意见,而对持续经营危机的不同定义会直接影响到样本的选择标准,从而得出不同的预测模型。持续经营审计意见预测模型建立在将被出具持续经营审计意见作为持续经营危机发生标准的基础上,而持续经营审计意见尚可进一步分为强调无保留、保留意见、无法表示意见和否定意见等4种具体意见类型。显然,这4种具体意见在持续经营不确定性程度上具有显著差异,不加区别地同等对待影响了模型参数估计的稳定性。持续经营危机预测模型则建立在将破产、破产清算作为发生标准的基础上,而在破产机制还不健全的国内,通常选用ST作为标准。将ST作为标准自然使得盈利能力低下是导致持续经营危机的主要原因,亏损与否将是持续经营危机与非持续经营危机公司之间存在显著差异的变量,这种变量的自选择问题也是国内相关研究的一个不足之处。

  (二)变量选择

  持续经营审计判断模型的变量选择依然处于试错原则阶段,缺乏理论基础。在如何选择变量及是否存在最佳的变量组合来预测持续经营危机发生的概率仍然存在较大分歧

上一篇:浅谈管理审计网 下一篇:没有了