论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
[关键词]持续经营;审计判断;预测模型
企业的持续经营能力状况直接影响到者的决策行为。因此,对持续经营能力进行判断和评价是师进行报告审计时所必须考虑的重要内容,也是政府监管部门关注的一个焦点问题。近年来,为了减少审计期望差距,审计界制定并完善了持续经营审计准则及相关指南,特别是加强了对持续经营审计判断模型的研究,期望提高持续经营审计判断的客观性和一致性。我们搜集了ABI/INFORMGlobal、BusinessSourcePremier(BSP)、和ElsevierScience等国际著名数据库以及中国期刊网中关于持续经营审计判断模型研究的70余篇文献,对审计判断模型的构建方法、应用效果及局限性进行了和整理,以期对改进我国持续经营审计手段及方法提供借鉴。
持续经营审计判断模型根据研究对象的不同可分成两大类:持续经营危机预测模型和持续经营审计意见预测模型。前者关注公司是否会向法院破产(国内研究以是否被ST为标准),后者关注公司是否会被出具涉及持续经营存在重大不确定性的非标准无保留审计意见(下简称持续经营审计意见),二者都可以为持续经营审计判断提供辅助决策信息。但是,这两类模型的研究目的并不相同,前者认为模型在预测公司是否破产的准确性上要高于审计师,借助模型有助于减少审计期望差距[1-2].后者认为提出破产申请和被出具持续经营审计意见并不是一一对应的,被出具持续经营审计意见的公司并非都会提出破产申请,而且持续经营危机预测模型未能包含审计师进行持续经营审计判断时所考虑的一些重要因素,如行业前景、层能力等[3].Hopwood[4]等还证实在控制样本配对比例及分类错误的条件下,持续经营危机预测模型在预测是否破产的准确性上并不优于审计师。
一、持续经营危机预测模型
持续经营危机预测模型按照所用概率方法的不同,可分成多元线性判别模型、多元概率比(Probit)模型、多元回归(Logistic)模型、人工神经网络模型等4类,下文将分别予以阐述。
(一)多元线性判别模型
Altman[1]以美国1946—1965年提出破产申请的33家公司和33家健康公司为研究样本,采用多元线性判别方法构建了如下预测模型,即“Z分值模型”:Z=1.2X1+1.4X2+3.3X3+0.6X4+1.0X5,其中:X1为营运资本/资产总额;X2为留存收益/资产总额;X3为息税前利润/资产总额;X4为优先股和普通股市值/负债账面价值;X5为销售收入/资产总额。当计算出来的Z值等于或低于1.8时,预示企业破产的可能性非常高;当Z值介于1.81和2.99之间时,企业是否破产不能确定;当Z等于或高于3时,企业则不可能破产。Z模型对破产公司样本的预测准确率为82%,而只有46%的破产公司在破产前被出具持续经营审计意见。Altman认为Z模型可以提高审计师在持续经营审计判断上的准确性和一致性。Altman[5]用1970—1982年间109家破产公司为样本对“Z分值模型”进行了有效性验证,发现模型对破产公司样本破产前一年的预测准确率达到86.2%,而审计师在公司破产前一年的预测准确率为48.1%,表明Z模型对持续经营危机的预测准确性高于审计师。
继Altman之后,Levitan、Knoblett[6],Koh、Killough[2],Cormier[7],陈静[8]和张玲[9]等都采用多元判别分析方法构建了持续经营危机预测模型。这些模型的构建方法基本相同,所不同的是在持续经营危机标准界定上、样本时间窗口、对照组样本选取方法、变量选取上有差异。对这些模型的有效性验证表明预测模型比审计师在预测公司是否破产方面具有更高的准确性,应用模型有助于减少审计期望差距。
针对多元线性判别分析要求数据服从正态分布和等协方差的假设与企业数据实际状况的矛盾,以及配对抽样法因样本中两类公司比例与它们在总体中的比例严重不一致而夸大了预测模型判别准确性的缺陷[10],不需要正态分布和等协方差假设的Probit、Logistic模型被大量采用,它们都是建立在累积概率函数的基础上,一般运用最大似然估计,而不需要满足自变量服从多元正态分布和等协方差的假设。
(二)多元概率比模型
Zmijewaki[10]选取了1972—1978年间发生破产的40家公司和800家健康公司作为样本,采用Probit方法建立了预测模型,即X模型:X=-4.3-4.5Xl+5.7X2-0.004X3,其中:Xl=净利润/总资产,X2=负债总额/资产总额,X3=流动资产/流动负债。陈明贤运用企业样本建立了如下Probit模型:X=0.29354+20.491X1+4.3209X2-29.515X3,其中:X1为In(流动资产/流动负债);X2为In(固定资产/股东权益);X3为营运资本/负债总额。结果表明Probit模型在持续经营危机出现之前1年至前5年的判别正确率分别为93.33%、83.33%、83.33%、83.33%和80%64%.
(三)多元逻辑回归模型
Ohlson[11]以美国1946—1965年期间提出破产申请的105家公司和2058家健康公司为研究样本,采用logistic建立了企业持续经营危机预测模型,即“Y模型”:Y=-1.32-0.4X1+6.03X2-1 .43X3+0.76X4-2.37X5-1.83X6+0.285X7-1.72X8-0.52X9,其中:X1为Log(资产总额/GNP物价指数);X2为负债总额/资产总额;X3为营运资本/资产总额;X4为流动负债/流动资产;X5为净利润/资产总额;X6为经营活动产生的现金净流量/负债总额;X7:如果前两年有一年亏损,为1;否则为0;X8:如果负债总额>资产总额,为1;否则为0;X9:(当年净利润-上年净利润)/(5当年净利润5+5上年净利润5)。Ohlson利用上述模型进行预测,结果发现破产公司前一年的Y值平均为27%,显著高于非破产公司的Y平均值4%.
Kuruppu、Laswad和Oyelere[12]将清算作为发生持续经营危机的标准,以新西兰1987—1993年间85家破产清算的公司和50家未清算但处于财务困境状况的公司为研究样本,用Logistic方法构建模型,研究结果表明在破产法案以债权人为导向的,清算预测模型可能比破产预测模型在判断准确度及误判成本方面更为优越。
吴世农、卢贤义[13]以我国1998—2000年上市公司为研究对象,选取了70家处于财务困境的公司和70家财务正常的公司为样本,应用逐步回归法,从21个财务指标中最后选定6个为预测指标:盈利增长指数、资产报酬率、流动比率、长期负债与股东权益比率、营运资本与总资产比、资产周转率。他们分别应用线性概率模型、Fisher二类线性判别模型、Logistic回归三种方法,建立了三种预测财务困境的模型。研究结果表明:三种模型均能在财务困境发生前作出相对准确的预测,在财务困境发生前4年的误判率在28%以内;其中Logistic预测模型的误判率最低,财务困境发生前1年的误判率仅为6.47%.
姜秀华和孙铮[14]还考虑了公司治理因素对持续经营能力的影响,他们运用Logistic逐步回归法从13个变量中最终选取了4个变量:毛利率、其他应收款与总资产比率、短期借款与总资产的比率、股权集中系数,模型对ST公司的判别准确率达到84.52%.他们的研究拓展了变量选择的传统财务框架,但股权集中度是否为治理效能的惟一、有效替代还有待。姜国华、王汉生[15]也证实主营业务利润水平和第一大股东持股比例是影响公司是否被ST的最重要因素。
(四)人工神经网络模型
人工神经网络(ArtificialNeuralNetwork,ANN)是对人类大脑神经运作的模拟,模型具有较强的容错能力和自主学习能力,可