论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
3 讨 论
本研究结果显示黑质纹状体通路单侧损毁后大鼠PPN神经元的放电频率增加,放电形式趋于不规则。这些结果与以往的报道相类似[3]。在PPN内注射M受体激动剂Oxo睲对正常大鼠和6睴HDA毁损大鼠PPN神经元放电均产生了兴奋、抑制和无变化三种不同的效果。这表明Oxo睲对PPN神经元的作用较为复杂,可能不仅涉及突触后M受体,也涉及突触前受体和其他传入纤维的调节。在PPN神经元上有胆碱能M2、M3和M4受体亚型的表达,并且M2受体的密度最高;M2受体主要是作为自身受体表达于胆碱能神经元,但它也表达在一些非胆碱能神经元及其他传入纤维末梢[5,8]。M2受体与腺苷酸环化酶呈负性耦联。它被M2受体激动剂激活后可抑制神经元的活性及递质释放[5]。在本研究中发现,正常大鼠给予Oxo睲局部注射后部分神经元放电频率明显降低。这可能是由于突触后M2受体的激活抑制了PPN神经元的活动。另外,PPN接受来自STN和额叶皮层的兴奋性谷氨酸能神经纤维[12],M2受体表达于这些谷氨酸能神经纤维的末梢,且突触前M2受体的激活可抑制相应递质的释放[9]。如果M2受体表达于PPN的谷氨酸纤维末梢,这可能是引起Oxo睲抑制PPN神经元电活性的间接机制。至于正常大鼠部分PPN神经元在局部注射后电活性增高的原因尚不清楚。PPN的胆碱能传入纤维主要来自对侧PPN和同侧隔核的背外侧,而γ舶被丁酸能传入纤维则来自于SNr和EP[1]。研究表明纹状体的胆碱能和γ舶被丁酸能纤维末梢均表达M2受体,且该受体的激活抑制乙酰胆碱和γ舶被丁酸的释放[910]。因此,可以推测PPN胆碱能和γ舶被丁酸能纤维末梢M2受体的激活可抑制乙酰胆碱和γ舶被丁酸的释放,从而间接兴奋PPN神经元。另外,M3受体亦表达于少部分PPN神经元,且该受体的激活可增加神经元的放电频率[9]。这也是PPN神经元活性增强的可能原因之一。
本研究结果显示6睴HDA损毁后大鼠PPN神经元活动增加,且趋于不规则,大部分PPN神经元可被M型胆碱能受体激动剂Oxo睲抑制。除上述M受体的激活抑制正常大鼠PPN神经元的放电频率所涉及的机制外,我们推测6睴HDA损毁大鼠PPN神经元活动的增加及Oxo睲对神经元的抑制作用还与STN和额叶皮质的兴奋性谷氨酸能传入纤维有关。电生理和代谢研究发现刺激STN、损毁STN或药物阻断均可缓解PD动物模型和PD患者的运动症状[4,11],说明在PD状态下STN的活动是增强的。纹状体多巴胺能传入纤维的缺失可导致纹状体内皮质参谱刺逋路谷氨酸释放增加,导致谷氨酸浓度升高。而且,我们最近的研究发现6睴HDA损毁大鼠内测前额叶皮质锥体神经元处于过度活动状态[7,12]。此外,在体电生理记录发现SNc损毁后,由谷氨酸介导的纹状体神经元突触后电位显著增强[13]。这些研究结果提示PD的病理生理机制与谷氨酸能神经元的过度激活有直接关系。STN和额叶皮层的兴奋性谷氨酸能传入纤维是6睴HDA损毁大鼠PPN神经元活性增加的主要原因。过度活动的谷氨酸能传入纤维上的突触前M型胆碱能受体在被Oxo睲激活后,抑制了谷氨酸的释放,从而使PPN神经元的活动降低。
本研究结果显示6睴HDA毁损组大鼠PPN神经元处于过度活动状态。M胆碱能受体的激活对正常和6睴HDA损毁大鼠的PPN神经元均产生了不同的影响。M受体激动剂对PPN神经元的作用主要涉及到M2受体亚型在PPN的不同作用位点,并与谷氨酸能、胆碱能和γ舶被丁酸能传入纤维的调节有关。从本研究结果可以看出,兴奋性谷氨酸能传入纤维对PD大鼠PPN神经元电活动的调节起着重要的作用。然而,M2受体亚型在PPN内的具体分布尚不清楚,明确这些受体作用位点将会帮助我们进一步解释上述现象。
【参考文献】
[2]MATSUMURA M, NAMBU A, YAMAJI Y, et al. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey [J]. Neuroscience, 2000, 98(1):97110.
[3]BREIT S, BOUALI睟ENAZZOUZ R, BENABID AL et al. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat [J]. Eur J Neurosci, 2001, 14(11):18331842.
[4]ORIEUX G, FRANCOIS C, FEGER J, et al. Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson餾 disease [J]. Neuroscience, 2000, 97(1):7988.