计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

胰岛素非注射给药的研究进展论文(2)

2015-06-28 01:05
导读:目前,美国已有INS鼻用制剂上市,商品名为Nazlin和Zorolin Nasal. 3 肺部给药 肺泡的总面积大,肺泡壁很薄,通透性良好,蛋白酶活性低于胃肠道,不存在首过

  目前,美国已有INS鼻用制剂上市,商品名为Nazlin和Zorolin Nasal.
  3 肺部给药
  肺泡的总面积大,肺泡壁很薄,通透性良好,蛋白酶活性低于胃肠道,不存在首过效应,所以经肺吸收可能成为大分子药物吸收进入全身循环的一条途径。但同时肺部给药也存在一些问题,比如需要特殊的给药装置,给药剂量和实际吸入剂量不准确,长期使用对肺部的安全性问题一直未受重视等。目前已报道的多种肺内给药系统,如脂质体,微球等,因脂质体主要由磷脂组成,而磷脂是肺泡表面活性剂的重要组部分,所以脂质体特别适合于肺内控释给药。
Shao等[23]研究发现,环糊精能INS的肺部吸收,应用甘胆酸钠,亚油酸和月桂基-β-D麦芽吡喃甙,再加抑肽酶或杆菌肽配制制剂,将其肺部给药,降血糖作用明显持久,且用杆菌肽者优于抑肽酶。
  沈赞聪等[24]研究了以氰基丙烯酸树脂为载体的INS微球(INS-NP)经大鼠肺部给药后的降血糖作用。其肺给药的相对生物利用度达到59.2%,与INS溶液相比,INS-NP经大鼠肺部给药后能明显延长其血糖下降时间,作用时间达12h以上,有显著的缓释作用。
  Kawashima等[25]制备了用PLGA装载的INS微球,平均直径在400nm。体外释放有突释作用,85%的药物能很快释放,其余药物延长释放数小时。豚鼠经雾化吸入给药后血糖水平显著下降,降糖作用延长至48h,与INS溶液雾化吸入作用时间(6h)相比微球的延长释放效果可能是由沉积在肺部的微球持续释放造成的。干粉INS的微球或脂质体稳定性好,工艺简单,能有效地输送到下呼吸道,是一种良好的肺部给药形式。最近Cenerex公司成功地研制出了一种新型的INS吸入器,并且在进行临床试验,可望在两年内投放市场。

  4 直肠给药

(科教范文网 fw.nseac.com编辑发布)

  INS直肠栓剂是代替注射给药的重要途径之一。为了增加吸收,需要向其中加入吸收促进剂。水杨酸钠(SS)便是重要的一种,但它的促进吸收能力较差,可能是二者在直肠中吸收不同步造成的。马鸣超等[26]首次利用葡聚糖凝胶(DG)来特异地减慢SS从栓剂中的释放速度,而不影响INS的释放,从而达到二者同步吸收的作用。试验证明含200mgDG的INS与不含DG的INS相比明显提高栓剂中INS在兔直肠中的吸收量,致使兔血浆中INS最大浓度不变的情况下,持续时间明显延长,进而血糖浓度下降,当DG达到400mg时效果反而不好,分析可能是过量的DG过度地减慢了SS从INS栓中的释放速度,以至于SS始终不能达到促进INS吸收浓度。在此基础上马鸣超等[27]又制成了加入甲硝唑的INS,结果证实甲硝唑和DG对SS促进INS在兔直肠吸收具有协同作用。
  Onuki等[28]评价了不饱和脂肪酸如油酸、DHA(二十二碳六烯酸)、EPA(二十碳五烯酸)作为INS直肠给药(W/O/W)复乳的吸收促进剂的效应和毒性。研究证明DHA有很强烈的促渗作用,而且不能或较少引起黏膜破坏。YUN等[29]开发了一种热可逆性INS液体栓剂,该栓剂能在体温下发生相转变而成为黏附性凝胶,能提高INS的生物利用度,当处方配比为INS:聚合物P407:聚合物P198:聚卡波非:水杨酸钠为100IU/g:15:20:0.2:10%时,表现出适宜的物化特性和良好的安全性,并给出了较低的血糖水平,水杨酸有促进吸收的作用。Barichello[30]开发了一种Pluronic F-127(PF-127)的INS直肠栓,证明含20%PF-127可能促进INS的吸收。
  5 经皮给药
  角质层对大分子肽类药物的透皮吸收能力差,但只要措施得当,仍可透过皮肤发挥全身治疗作用。Ryszka等[31]将INS制成软膏,通过124I标记证实了INS可从软膏基质中释放出来,透过皮肤进入大循环,且体内外释药量有一定相关性。毛晓明[32]用脉冲电流增加皮肤两侧的电流强度(不超过0.6mA/cm2),给糖尿病大鼠用INS治疗,结果显示血糖下降,且在一定范围内下降幅度与脉冲电流强度和释放INS浓度成正比。
(科教作文网http://zw.nseAc.com)

  6 经眼给药
  滴眼剂是一种简便易行的剂型,INS主要通过眼结膜和鼻泪管黏膜吸收进入体循环而达到降糖效果。一般眼内容量少,INS作用时间短,生物利用度低,因此人们致力于研究能延长INS作用时间的滴眼剂,并选择刺激性小滴眼剂。Yung等[33]选用生物相容性好,理化性质稳定且可生物降解的明胶海绵作骨架制成INS眼内给药装置,该装置含5mgINS和20μg的Brij-78作吸收促进剂,经兔眼给药后,2h血糖下降约50-62%,且维持时间达4-6h,是普通滴眼剂的10倍。
  李素霞[34]等通过对缓冲液,增粘剂和吸促进剂的筛选,确定了最佳处方组成:2%INS,1%Brij-78,0.5%EDTA,1%玻璃酸钠的含0.03%对羟基苯甲酸乙酯的硼酸缓冲液,滴眼后吸收迅速,可显著降低糖尿病兔的血糖,EDTA和Brij-78合用,促吸收效果最佳。
  吕敏[35]等以1%EDTA为溶媒,pH7.4磷酸盐为缓冲液配成0.5%INS溶液经家兔眼给药,降糖效果比静脉注射更为显著,说明EDTA能明显地促进INS眼部吸收。张文玉等[36]进一步比较了0.5%Brij-35和0.5%EDTA的1%INS滴眼液的刺激性和降糖效果,综合结果表明,含0.5%Brij-35的1%INS滴眼液对家兔黏膜无刺激作用,而降糖效果好,故认为Brij-35比EDTA更为理想。
  7 结语
  近年来,对INS的非注射途径给药研究虽取得一些进展,但面临的困难仍然很多,黏膜吸收促进剂的选择及如何降低刺激性仍是个问题。而且目前为止,报道的生物利用度最高为59.2%,相对来说较低,因此在这方面尚无突破性的进展,还需进一步深入研究开发,寻找合适的给药途径及剂型。


上一篇:蛋白质质谱分析研究进展论文 下一篇:没有了