客户关系管理的数据采集过程分析
2016-07-10 01:11
导读:市场营销论文毕业论文,客户关系管理的数据采集过程分析在线阅读,教你怎么写,格式什么样,科教论文网提供各种参考范例:
内容摘要:近几年来许
内容摘要:近几年来许多公司都建立了自己的CRM系统,但大多数公司几乎没有对CRM系统进行深入使用。企业怎样才能更好的利用CRM系统,数据采集就成为帮助他们从数据中获得有用信息的有力工具。本文描述了在CRM系统中应用数据采集的六个步骤,希望能对相关企业有所帮助。 关键词:CRM 数据采集
客户关系管理(CRM)有助于提高公司与顾客之间交流的效益并且同时使其变得更加友好,然而,如果没有一种科学方法,很难去处理大量的客户信息和日益复杂的与客户的交流。因此如何充分利用这些数据并发挥效益就成为工作的重点。
要使CRM产生效益首要任务就是数据采集。所谓数据采集即对大量数据中的新奇、隐含和可控的知识进行重要提取并且可利用其做出准确的预测,找到好的顾客,提出合适的附加产品等。一般数据采集包含以下六步: 企业定义→数据储存→数据选择→数据建模→数据评估→部署,如图1所示。
企业定义
数据采集本身就是解决实际的业务问题。首先数据采集的目标应该根据公司的商业需求以及对原始数据和实际操作的分析来定义。企业必须清楚自己的目的才能最好的利用数据采集。例如, 根据“提高反应速度”或“增加反应价值”的特定目标,企业就需要建立一个截然不同的模型以加强服务中心的反应。
数据采集在客户关系管理中通常应用于以下四个领域:保留客户;客户服务与支持;市场研究;提高客户忠诚度。
数据储存与选择
在数据储存阶段的主要任务是收集数据,同时应该注意:数据不可以储存在数据库管理系统中,而是储存在xml文件和excel里。
(转载自http://zw.nseac.coM科教作文网) 为了CRM的应用,数据通常通过客户、产品、市场来收集。客户的资料通常包含名字、年龄、性别、收入、工作、信用等级、是否结婚、是否有孩子等等。
数据选择是数据采集六步骤中最重要的阶段之一。前一个阶段收集的数据当然不是全部有效的,它可能包含噪声数据、不一致的数据和模棱两可的数据。如果要得到精确的结果,数据选择是必须的。它通常由下列三个步骤组成:数据提取、数据处理、数据集成和转换。
数据提取。解决一个具体的业务问题, 我们不需要所有的数据。应该保留相关数据并且剔除无用数据。例如, 为了增加服务中心的反应速度, 客户的性别应该被提取。
数据处理。在数据处理阶段,应该用平均值填充噪声数据, 改正不一致的数据, 并且除去模棱两可的数据等等。
数据集成和转换。收集的数据通常存放于不同类型的数据库管理系统或文件中,这就需要将其输出到统一的数据集中,这也就是数据集成和转换的重要任务。
数据建模
数据建模是一个重复的过程。我们需要探究许多模型从而找到一个最适当的模型来解决实际存在的业务问题。在搜索模型时,有时需要重新对先前的数据进行改动。在决定所做预测的类型(例如分类、聚类、联合规则、回归)以后,必须选择一种模型类型(例如决策树、神经网络、所有法或旧式备用的逻辑回归)做预测。
在建立模型之前,应将收集的数据分成两组。一组用于建立和训练模型,另一组用于评估之后建立的模型。目前已经存在许多成熟的模型。但是要应用CRM软件解决业务问题,究竟哪种模型最适用于解决具体的业务问题呢?主要有以下三种:
分类和聚类。根据客户不同的购买模式和个人资料(譬如社会经济地位、性别、年龄、生活方式、家庭背景等等),可对客户进行分组。对客户进行分类在CRM中发挥着重要作用,特别是当实施营销战略或决定价格灵敏度时。对客户分类可以将目标市场定义为片段的集合,每段具有不同的特征。我们采取不同的策略来满足每个片段的不同需要从而保持与客户的有利可图的长期关系。决策树是用于该领域的最有代表性的算法。