论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
数据挖掘( Data Mining )和统计学:有什么联系?
J.H.Friedman
斯坦佛大学统计系及线性加速中心
摘要:DM(数据挖掘)是揭示存在于数据里的模式及数据间的关系的学科,它强调对大量观测到的数据库的处理。它是涉及数据库管理,人工智能,机器学习,模式识别,及数据可视化等学科的边缘学科。用统计的观点看,它可以看成是通过计算机对大量的复杂数据集的自动探索性分析。目前对该学科的作用尽管有点夸大其词,但该领域对商业,工业,及科学研究都有极大的影响,且提供了大量的为促使新方法的发展而进行的研究工作。尽管数据挖掘和统计分析之间有明显的联系,但迄今为止大部分的数据挖掘方法都不是产生于统计学科。这篇文章对这一现象作了一些解释,并说明了为什么统计学家应该关注数据挖掘。统计学可能会对数据挖掘产生很大影响,但这可能要求统计学家们改变他们的一些基本思路及操作原则。
1 序言
声明:
该文中的观点仅代表作者本人的观点,并不一定反映编辑,主办者,斯坦佛大学及同行的观点。
第二十九次论坛(on the Interface)
(May 1997,Houston,TX)的主题是数据挖掘和大数据集的分析。这次会议的主题和二十年前的一次由Leo Breiman组织,ASA 和IMS赞助的关于大量复杂数据分析的会议是一致的。二十年后,探讨一下二十年来的所作所为是极其恰当的。这篇文章将讨论如下问题:
什么是数据挖掘?
什么是统计?
它们之间的联系是什么(如果有的话)?
统计学家能作什么?(可能的话)
Should we want to?
2 什么是数据挖掘?
数据挖掘的定义非常模糊,对它的定义取决于定义者的观点和背景。如下是一些DM文献中的定义:
数据挖掘是一个确定数据中有效的,新的,可能有用的并且最终能被理解的模式的重要过程。--Fayyad.
数据挖掘是一个从大型数据库中提取以前未知的,可理解的,可执行的信息并用它来进行关键的商业决策的过程。--Zekulin.
数据挖掘是用在知识发现过程,来辩识存在于数据中的未知关系和模式的一些方法。--Ferruzza
数据挖掘是发现数据中有益模式的过程。--Jonn
数据挖掘是我们为那些未知的信息模式而研究大型数据集的一个决策支持过程。--Parsaye
数据挖掘是...
软件提供者强调竞争优势。`你的对手使用它,你最好得跟上。`同时强调它将增加传统的数据库的价值。许多组织在处理存货,帐单,会计的数据库方面有大量的业务。这些数据库的创建和维护都耗资巨大。现在只需要将相对少的投资用于数据挖掘工具,就可以发现隐藏在这些数据中的具有极高利润的信息`金块`。
目前硬件和软件供应者的目的是在市场还未饱和前通过迅速推出数据挖掘产品为数据挖掘作广告。如果一个公司为数据挖掘包投资了五万至十万美元,这也可能只是实验,人们在新产品未被证实比旧产品具有很大优势之前是不会贸然购买的。以下是一些当前的数据挖掘产品:
IBM: `Intelligent Miner` '智能矿工'
Tandem: 'relational Data Miner' '关系数据矿工'
AngossSoftware: 'KnowledgeSEEDER' `知识搜索者`
Thinking Machines Corporation: 'DarwinTM'
NeoVista Software: 'ASIC'
ISL Decision Systems,Inc.: 'Clementine' `克莱门小柑橘`
DataMind Corporation: 'DataMind Data Cruncher'
Silicon Graphics: 'MineSet'
California Scientific Software: 'BrainMaker'
WizSoft Corporation: 'WizWhy'
Lockheed Corporation: 'Recon'
SAS Corporation: 'SAS Enterprise Miner '
除了这些`综合`软件包外,还有许多专门用途的产品。另外,许多专业于数据挖掘的咨询公司也成立了。在这个领域,统计学家和计算机科学家的不同在于当统计学家有一个想法时,他(她)将它写成文章,而计算机科学家者开一家公司。
(转载自http://zw.NSEaC.com科教作文网)
--输入对话框
--利用图表分析
--复杂的图形输出
--大量数据图
--灵活的图形解释
树,网络,飞行模拟
-- 结果方便的处理。
这些软件包对决策者来说就象数据挖掘专家。
在当前的数据挖掘软件包中被用到的统计分析过程包括:
.决策树推断(C4.5,CART,CHAID)
.规则推断(AQ,CN2,RECON,etc)
.最近邻方法(合乎情理的方案)
.聚类方法(数据分离)
.联合规则(市场篮子分析)
.特征提取
.可视化
另外,有些还包括:
.神经网络
.bayesian belief 网络(图形模型)
.遗传算法
.自组织图
.神经模糊系统
几乎所有包都不包括:
.假设检验
.实验设计
.响应表面模型
.ANOVA,MANOVA,etc.
.线性回归
.判别分析
.对数回归
.广义线性模型
.正则相关性
.主成分分析
.因子分析
后面的这些过程是标准统计包里的主要部分。因此,当前被市场化的数据挖掘包中的大部分方法在统计学科之外产生和发展。统计学核心的方法已被忽略。
3 Why Now? What's the rush?
从数据学习的想法已经提出很长时间了。但在忽然之间人们对数据挖掘的兴趣却变得如此强烈,这是为什么呢?主要原因是近来它与数据库管理领域有了联系。数据,特别大量的数据保存在数据库管理系统中。传统的DBMS集中于在线转换过程(OLTP n-line transaction processing);也就是数据组织的目的是存储并快速恢复单个记录。它们过去常用来记录库存,薪水表记录,帐单记录,发货记录,等等。
最近,数据库管理界对将数据库管理系统用于决策支持越来越感兴趣。这样一个决策支持系统将允许对原本为在线转换过程应用收据的数据进行统计查询。比如`上月我们的所有连锁店一共卖了多少尿布?`,决策支持系统需要`数据仓库`的结构。数据仓库用相同的格式将某组织分散在各个部门的数据统一成一个单一的中心数据库(通常有100GB大)。有时较小一点的子数据库也可以建成来进行特殊的分析;这些又叫`数据市场`(Data Marts) (转载自http://zw.NSEAC.com科教作文网)
决策支持系统为在线分析过程(OLAP)和关系在线分析过程设计。关系在线分析过程为`多维分析`设计。关系在线分析过程数据库通过维组织,维即属性(变量)的逻辑类。数据体可以看成是高维偶然事件表。关系在线分析过程支持如下类型的查询:
显示春季运动服部门总的销售量,及California大城市商业街中商店数和小城市中商店进行比较,显示所有利润边界值为负的项
如果关系在线分析过程的查寻由使用者手工进行,使用者提出潜在的相关问题;得到结果需要附加的查寻,其答案可能暗示进一步的问题。这样的分析过程一直到不再有感兴趣的问题提出,或者到分析员精疲力尽或耗完时间。如果用关系在线分析过程进行数据挖掘,那它需要一个经验丰富的使用者,他能不睡且不老,使用者必须不断地重复提出见闻广博的问题。
数据挖掘也可以用数据挖掘系统(软件)进行,它只需要使用者提供模糊的指令,就能自动搜索相应的模式,并显示重要的项,预测,或反常记录。
利润边界值为负的项有什么特征?
如果决定开发某项产品的市场-预测它的利润边界值
寻找那些其利润边界值可以准确预测的项的特征
不是所有的大的数据库都是商业化的,比方说科学和工程中大量存在的数据库。这些数据库通常和计算机自动收据数据联系在一起,比方说:
a) 天文的(天空图)
b) 气象的(气候,环境污染监测站)
c) 卫星遥感
d) 高能物理
e) 工业过程控制
这些数据也能得益于数据挖掘技术(原则上)
4 是数据挖掘还是智能训练?
当前对数据挖掘的兴趣在学术界引发了一些议题。数据挖掘作为一种商业事业看上去很可行,但它是否能被定为一种智能训练。当然它和计算机科学有极重要的联系。这些包括:
[1]