计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

自组织FPNN在宏观经济预测中的应用

2017-01-22 01:09
导读:经济论文毕业论文,自组织FPNN在宏观经济预测中的应用在线阅读,教你怎么写,格式什么样,科教论文网提供各种参考范例:摘要:论文针对经济预测通常表现为复杂的非线性这种特性,提出了一种基于自
摘要:论文针对经济预测通常表现为复杂的非线性这种特性,提出了一种基于自组织过程神经元网络(FPNN)和改进的BP神经网络建立的经济预测模型方法。自组织过程神经元网络(FPNN)由输入层、竞争层和输出层组成。FPNN筛选出对因变量(网络输出)最有影响作用的变量(自变量)之后作为改进的BP算法网络的输入节点,再用进行学习。该模型不仅克服了时间序列预测模型只能进行线性预测的不足,而且还避免了传统神经网络的固有缺陷。以2001年到2004年国内生产总值作为预测分析样本,并对预测结果和实际值进行了比较分析,结果验证了该方法的有效性。关键词:自组织过程神经网络;学习算法;正交基函数;经济预测;预测模型Abstract:Aiming at the complex Non-linear Property and The Time-Varying Property in the actual economic system,putforward the method of self-organization process neural networks(FPNN)merged a Improved BP neural network to constituteeconomic forecasting model.The self-organization process neural networks(FPNN)consists of input layer and competition layerand output layer.The variables(independent variables)which were filtrated by FPNN are the best influence to the dependentvariable(the output of network),then qua input node of the improved BP neural network to study.The model not onlyovercomes the shortage that timing series forecasting model just can do linear forecast,but also averts the disfigurements oftradition neural networks.Using the gross domestic product between 2001 and 2004 as the forecasting analytic stylebooks,compare the forecasting result to the actual result,finally the availability of the model is proved.经济预测对国家各级部门实行有效的经济宏观调控、以及市经济下各类企业制定具体的生产投代写论文放具有至关重要的指导性作。传统的预测方法一般采用统计中的线性自回归预测模型,但模型很难运用于非线性情况。因此,寻找通用的经济预测模型得尤为重要。近年来,人工神经网络的研究在国内外广泛兴。人工神经网络作为一种通用的非线性函数逼近工具,以其良的非线性品质、灵活而有效的自组织学习方法以及完全分布的储结构等特点,在预测领域中显示了很大的优势[1]。本文在此背景下,提出了自组织过程神经元网络[2]与改进的P神经网络相结合,构建了经济预测的通用模型,并对实际的济数据进行了预测,得到了很好的预测效果。一、自组织过程神经元网络自组织竞争型神经元网络[3]-[4]是Kohonen模拟人脑处于不同区的细胞对来自某一方面的刺激信号的敏感程度不同、特定细胞特定信号的特别反映能力可由后来的经历和训练而形成的特点提出的一种神经元网络模型,是一种重要的模式分类、优化组方法[5]。可以将传统自组织神经元网络模型推广为时域上的自织过程神经元网络,从而能够直接处理时变过程信号,更加逼地模拟生物神经元网络的行为。自组织过程神经元网络为一种层结构的过程神经元网络模型,采用自组织竞争学习算法,可一组时变数据中提取有意义的特征或内在的规律性,适用于过模式分类和优化组合等方面的应用[6]。1.自组织过程神经元网络模型。自组织过程神经元网络[7]为层结构,由输入层和过程神经元组成的竞争层构成。输入层各点与竞争层各节点之间实行全互连接,其输入信号和网络连权可为时间的函数。网络自适应提取输入函数所隐含的模式征,并对其进行自组织,在竞争层将作用结果表现出来。为失一般性,设网络的输入空间为(C[0,T])。所有这些样本都按照某种标准属于设定m类模式之一,竞争层节点的输出代表模式类别,而与该节点接的权函数则包含了本类模式的基本特征信息。;,第k个输入样本向量XK(t)与竞争层神经元节点j的连接权函数向量Wj(t)的相似系数为:。设具有最大相似系数的节点j*在竞争中获胜,即j*满足(6)对于样本向量XK(t),若使节点j*竞争获胜,则调整权值,使网络再遇到XK(t)或与XK(t)接近的样本向量时,节点j*获胜的可能性更大。即调整Wij(t)(i=1,2,……,n;j=1,2,……,m),使权函数Wj(t)向样本XK(t)方向移动,最终使过程神经元j*的输出表示XK(t)所代表的模式类别。(2)函数正交基展开。自组织过程神经元网络的计算和训练包括过程神经元对于时间的累积运算(例如积分运算),故可采用基于正交函数基展开的学习算法。设b(t))为输入空间中的函数,在给定的拟合精度下,将x步6:选取另一训练样本,返回步骤2,直至个训练样本全部提供给网络;步7:返回步骤5,直到各连接权的调整量都变得很小为止。结束。网络训练完成后,对任意待识别模式样本X(t),计算,,j=1,2,……,m。若j*满足,则过程神经元j*代表的模式类即为样本X(t)的模式类别。三、自组织过程神经网与改进的BP神经网络的结合传统的BP网络都研究输入、输出层维数确定的建模问题。然而,当我们研究复杂系统建模时,例如社会、经济系统,系统内各因素间的复杂关系还不能由我们现有的理论知识完全合理地进行解释。这时,为避免对因变量有重要影响的因素的漏选用的方式是用定性分析方法先选出数量较多的对因变量较有的那些自变量来,再着手建立系统模型。当这些因素(自变量多时,把它们都作为BP网络的输入显然会增加网络的复杂降低网络性能,大大增加计算运行的时间,影响计算的精度组织过程神经网为解决这一难题提供了较好的方法、由于自过程神经网可以对大量的输入变量进行分类处理,因此,应选取变量可尽量全面、广泛不必经过专门的主观筛选。这样们先用自组织过程神经网筛选出对因变量(网络输出)最有影用的变量(自变量)作为BP网络的输入节点,再用改进的B法进行学习。这样作的思想在于,虽然自组织过程神经网在出对因变量最有影响的因素(自量)方面有独到的优点,然预测精度往往不如BP算法。因而,取长补短,将两种方法地结合起来,从而增强了BP网络对复杂系统建模的能力。织方法与改进的BP神经网络模型相结合的算法步骤如下:(1)根据实际问题,选入对因变量有影响的变量(量),运用自组织过程神经网筛选出对因变量最有影响的变以此确定输入节点的个数。(2)设定输出层节点的个数,并初始化(包括给定学度E,规定迭代步数M0,隐节点数上限r,学习参数b,动量数a。初始隐节点数r应适当取大一些)。(3)输入学习样本,使样本参数变为[0,1]之间。(4)在[-1,1]之间随机产生数值赋给初始权矩阵。(5)按改进的BP法训练网络。(6)判断迭代步数是否超过规定步数或学习精度达到否,是,转入(7);否,返回(5),继续学习。(7)计算隐节点相关参数及发散度。先按规则2,进行节点删除;若规则2足,按规则1进行节点合并;若两规则都满足,则只按规则除;若两规则都不满足,则不进行结点合并、删除若无节并、删除,则转到步骤(8);否则,返回(4)。(8)学习精度是否达到要求或迭代参数是否超过规数,是,算法终止;否,返回(4)。
    上一篇:高校专业设置与适应区域经济发展问题研究 下一篇:没有了