计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

金融时间序列多分辨率实证研究的EMD方法

2017-11-12 02:41
导读:金融论文毕业论文,金融时间序列多分辨率实证研究的EMD方法论文模板,格式要求,科教论文网免费提供指导材料: 摘要:在介绍了人工股市建模的理论基础,后对人工股市的研究
摘要:在介绍了人工股市建模的理论基础,后对人工股市的研究进展作了评述,着重突出了隐藏在人工股市背后的复杂系统建模理念的发展和演变。分析了人工股市建模中存在的问题与不足,并进一步提出该领域未来的发展方向。
  关键词:Agent;计算金融;进展综述   
  20世纪80年代以来,金融学开始逐渐摆脱经典金融理论的束缚,计量金融、行为金融和市场微观结构理论均取得了重要的进展,人们对金融市场的认识也因此更为全面深入。
  
  一、人工股市建模的发展历程
  
  (一)早期阶段
  Kim-Markowitz模型作为第一个现代意义上的基于Agent的人工股市模型,其设计的主要目的在于解释和论证组合保险策略与1987年美国股市崩盘之间的关系。同时,它也向人们展示了在金融市场宏微观联系的研究中,基于Agent的人工股市建模的重要作用,而这种桥梁作用正是人工股市模型的核心所在。
  异质性产生多样性,所以异质性是复杂系统的一个重要特征。在人工股市建模的早期阶段,“异质和反馈”是人工股市建模的主要理念,典型的如Levy(1994)等人建立的模型,即LLS模型。在该模型中,Agent利用历史收益形成预期,不同的Agent具有不同的记忆长度,由于异质和反馈作用,模型输出的结果展现出复杂的动态,但LLS模型与Kim-Markowitz模型一样,并不能产生实证典型事实和标度率。模型输出的收益为高斯分布,也没有波动丛集性,从这个意义上说LLS模型更像是一个随机数生成器。
  
  (二)多样化发展阶段
  1.智能学习模型
  此类模型的一个重要特征是借鉴了人工智能领域的成果,使用了复杂的学习算法,模型中的Agent具有较高的智能性和适应性。著名的圣菲人工股市(SFI-ASM)就是这类模型的典型代表,该模型中的Agent使用遗传分类算法学习预测,研究发现当Agent修改其预测规则的速度比较快时,整个市场自组织成复杂的状态。这时,技术交易及短期泡沫出现,资产价格的统计特性呈现出如实际市场一样的GARCH效应。 (科教作文网http://zw.nseAc.com)
  Tay和Linn (2001)对SFI-ASM的分类学习系统作了修改,用模糊分类器系统代替了分类器系统。陈树衡等人(2001)的模型采用了遗传规划作为Agent的学习算法。LeBaron(2001)的模型使用神经网络结构来表示Agent的资产组合策略,为了体现异质性,Agent采用不同长度的历史数据学习。
  2.少数派博弈模型
  1997年Challet 和Zhang从Arthur的EI Parol Bar问题抽象出的一个基于Agent的模型,称为少数派博弈模型(Minority Game,MG)。模型中的Agent采用了较为简单的强化学习算法。模型只有少量的参数,但却是一个同时具备适应性、异质和反馈特点的确定性系统。所以很快少数派博弈模型就成为人们研究复杂适应系统、建立人工股市的一个重要范式。
  Johnson(1999)把现实市场中投资者的观望行为引入少数派博弈模型中。在他的模型中,当Agent的最好的策略表现低于某个门限值时,Agent就保持观望(inactive)。这样一来,系统中活动的Agent的数目就不是固定的,而是时变的,这个性质类似于统计物理中的巨正则系综(grand canonical),因此这样扩展后的模型被称为巨正则少数派博弈模型(Grand-Canonical MG)。Bouchaud, Giardina, Mezard(2000)首先发现巨正则少数派博弈能够产生波动丛集性,并且研究了巨正则性质产生波动丛集性的机制。巨正则少数派博弈模型的建立无论对复杂适应系统还是人工股市的研究都具有重要的意义。
  3.模仿学习模型
  模仿学习是一种非常重要的社会学习行为,同时也是一种相对比较简单的学习行为。如果只研究少数几种策略,则可以建立基于Agent的数学模型。这类模型通常仅包括基本分析与技术分析等少数两三种策略,每个Agent拥有一种策略,它们通过模仿学习不断选择表现较好的策略,在几种非线性作用力下模型通常会展现复杂的动态。这类模型主要有Brock和Hommes提出的“适应信念系统”(或称BH模型)和Lux与Marchesi建立的Lux模型。
上一篇:绍兴市农业保险存在的问题及对策探讨 下一篇:没有了