计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

基于不同分布假设的FIGARCH模型对上证

2017-11-26 02:33
导读:金融论文毕业论文,基于不同分布假设的FIGARCH模型对上证怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考:摘 要:采用FIGARCH(1,d,1)模型对上海股票市场指数的波动性在四种不同的分布
摘 要:采用FIGARCH(1,d,1)模型对上海股票市场指数的波动性在四种不同的分布假设(正态分布,广义误差分布, 学生t分布,非对称学生t分布)下进行了度量和比较研究,目的在于揭示分布假设对FIGARCH模型预测能力的影响。研究结果表明,使用厚尾分布假设(广义误差分布,学生t分布)提高了模型的估计和预测绩效,能更好地刻画上证指数的尖峰厚尾特征,但引入非对称学生t分布并未能进一步提高模型预测能力。
  关键词:FICARCH 模型;波动性;厚尾分布;非对称学生t分布
  
  1 背景介绍
  
  为了研究风险的时变特性, Engle (1982) 开创性地提出了条件异方差自回归过程(ARCH) 概念,对其进行了直接扩展, 形成了条件异方差自回归(GARCH) 模型。 GARCH 模型很好地刻画了金融时间序列的“波动集群”(volatility clustering) 特征, 得到广泛应用。FIGARCH模型是Baillie、Bollerslev、Mikklson 在Engle的ARCH模型(1982年)的基础上于1996年提出来的,来考虑股市或汇率收益序列波动中所发现的长期记忆现象。它的主要应用领域是金融资产, 包括证券、期权、利率等方面。该模型通过采用分数差分算子来替换GARCH模型中的一阶差分算子, 使其比GARCH或IGARCH模型更具有适应性,比较擅长于反映这类金融资产的异方差特性以及准确地刻画金融波动的长记忆特征, 从提出至今, 它已被许多人成功地应用到证券市场及汇率市场,尤其在分形市场假说理论(FMH)的波动性建模研究中使用最为广泛。
  金融时间序列另一特征是“尖峰厚尾”(excess kurtosis and fat tail), 但基于正态分布的假设却未能予以刻画。Bollerslev (1987) 等人使用厚尾Student-t 分布, Nelson( 1991) 等人则建议使用Generalized Error Distribution (GED) 分布。鉴于此,可以假定残差序列服从正态分布、学生t 分布、广义误差分布和非对称t 分布。本文在这四种分布假设下, 比较了FIGARCH 模型对上证指数波动性的预测, 目的在于揭示分布假设对指数波动性测算的影响。 (科教范文网http://fw.NSEAC.com编辑发布)
  
  2 FIGARCH模型介绍
  
  文献在GARCH模型设定的基础上,给出了反映长记忆性最常用的FIGARCH (玴,d,q)模型的表达式:
  
  3 模型的估计方法
  
  模型中条件残差分布的选择对于模型的拟合效果和解释能力也有很大的影响。研究表明金融时间序列大都呈现尖峰、肥尾的特征,并且分布可能是非对称的。因此借鉴文献 中做法在考虑常用的正态分布的同时,引入学生t 分布、广义误差分布、非对称t 分布,并采用极大似然法分别进行参数估计。选择的条件分布不同,则模型最大似然估计的似然函数也不相同,具体形式如下所示:如果假定残差呈条件正态分布,则其对数似然函数为:
    上一篇:商业银行内部稽核的有效性研究 下一篇:没有了