论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
关于艾滋病疗法的评价及疗效预测的数学模型
摘要
艾滋病是当前人类社会最严重的瘟疫之1,从1981年发现以来的20多年间,它已经吞噬了近3000万人的生命。
艾滋病治疗的目的,是尽量减少人体内HIV的数量,同时产生更多的CD4,至少要有效地降低CD4减少的速度,以提高人体免疫能力。艾滋病的实际治疗研究表明,CD4浓度增加,HIV浓度降低,艾滋病患者的病情会得到较好控制,但是,在治疗过程中发现,药物治疗的效果并非如我们想象的那样可以持久有效,即:在使用某1种药物治疗到达1定时间之后,无论是HIV还是CD4的含量都会出现反弹,而这个时间往往也因病人而异。此外,在实际治疗时,不同的药物治疗的费用与治疗效果都不相同,在对病人进行治疗时常常会综合使用几种药物,如何恰当的混合使用药物来获得最好的治疗方案也是需要解决的1个问题。
针对这些问题,本文以美国艾滋病医疗试验机构ACTG(Aids Clincal Trials Group)公布的两组数据为基础,用数学建模的方法对药物最佳治疗终止时间预测及药物治疗方案评价问题进行了分析,并建立了相应的预测模型与评价模型。
结果表明,所构建的预测模型对大部分个体数据有较好的符合度,具有预测疗效、计算最佳治疗终止时间的作用;而所构建的评价模型能为艾滋病的实际治疗提供理论上的参考。
关键词: 治疗效果;最佳治疗时间;阻滞增长模型
Mathematical Module For Appreciation & Prediction of Efficiency on Medical Therapies Against AIDS
Abstract (转载自http://zw.NSEAC.com科教作文网)
Presently, AIDS(Acquired Immune Deficiency Syndromes) is one of the most serious epidemic in the world, which means ,since found in 1981,it has taken almost 30 million lives.
The therapies aim at reducing the amount of HIV, and producing more CD4 as much as possible, at least slowing down the speed CD4 loses with, which will enhance humans immuning ability. The actual research on AIDS shows that with CD4 increases, HIV decreases, and the patient feels better. .But, we also know that the efficiency cant last as long as we thought. Namely, after certain times, no matter HIV or CD4 may have a unpredictable phenomenon. And the standard for that differs. Also, in actual cruelty, different therapies have different fees and different efficiencies. So some kinds of medicine usually are used in certain approach. How to use them properly to obtain the best efficiency is our focus.
Facing such problems, this article analyzes the prediction about best ending time and appreciation, building corresponding predicting-module and appreciating one.
As result shows, predicting-module has a good coordination to major of data, and works well in predicting efficiency and computing the best ending time. Meanwhile, the appreciating one can be a theorical proof for AIDS actual operation.
Keywords: Efficiency; Best Cure Time; Module of Preventing Increasement