计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

图像的小波降噪

2014-01-25 01:29
导读:数学论文毕业论文,图像的小波降噪怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考: 图像

图像的小波降噪
 

摘要:图像降噪1直是图像处理领域1个研究得比较多的课题,也是1个热点领域。其中小波变换降噪技术是被研究的最多1种技术,本文主要讨论近几年兴起的阈值降噪技术。2维小波分析用于图像降噪的步骤如下。
   (1)2维图像信号的小波分解。在这1步,应当选择合适的小波和恰当的分解层次(记为N),然后对待分析的2维图像信号进行N层分解计算。
(2)对分解后的高频系数进行阈值量化。对于分解的每1层,选择1个恰当的阈值,并对该层高频系数进行软阈值量化处理。
(3)2维图像信号的小波重构。同样的,根据小波分解后的第N层的近似(低频系数)和经过阈值量化处理后的各层细节(高频系数),来计算2维信号的小波重构。
还介绍了小波的数学基础。如:小波变换,小波离散及框架,多分辨率分析和Mallat算法的信号分解和重建过程。
图像信号的小波降噪步骤和1维信号的降噪步骤完全相同,所不同的是,处理工具是用2维小波分析工具代替了1维小波分析工具。利用MATLAB 7 ,通过具体的例子来说明如何利用小波分析进行图像降噪这个问题。
   关键字:图像降噪;小波分解;阈值量化;小波重构


Denoising Image by Using Wavelet
 

Abstract:Image noise reduction has been an area of image processing more research topics, as well as a hot field. Wavelet transform noise suppression technology is a study of the most technical, In this paper, we mainly discusses the noise suppression technology of noise threshold which is a method rising in recent years. Wavelet analysis for the two-dimensional image noise reduction steps are as follows.

(科教作文网http://zw.ΝsΕAc.com发布)


(1) The wavelet decomposition of two-dimensional image. In this step, we should choose a suitable and appropriate wavelet decomposition levels (recorded as N), then decompose the 2-D analyzed image signal into N layer decomposition.
(2) Threshold Quantified about the high-frequency coefficients decomposed. For each level of decomposition, we choice an appropriate threshold, and decide the quantity of the soft threshold for high-frequency coefficients of this layer.
(3) The reconstruction of two-dimensional image signal by using wavelet. Similarly, according to the approximation of the Nth level (coefficient of low frequency) decomposed by using wavelet and the various details (coefficient of high-frequency) after quantified for the threshold values, calculate the wavelet reconstruction for the two-dimensional signal.
The mathematical base of wavelet also is introduced, such as: wavelet’s transformation, discrete wavelet and framework, multi-resolution analysis, Mallat algorithm for the process of decomposition and reconstruction of a signal.
The steps of noise reduction by using wavelet for image signal are identical to the steps of one-dimensional signal noise reduction. The only difference is the process tools. It is using two-dimensional wavelet analysis tools instead of one-dimensional wavelet analysis tools. By using MATLAB 7, through specific examples illustrate how to use wavelet analysis to denoise for an image.
Keywords: image noise reduction ( denoise of a image); decomposition applying wavelet; quantization of a threshold、reconstruction by using wavelet

    上一篇:在线视频服务系统 下一篇:没有了