计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

探索,猜想,论证(1)

2018-04-18 01:45
导读:教育论文毕业论文,探索,猜想,论证(1)论文模板,格式要求,科教论文网免费提供指导材料:小学生学习数学的过程,是一种复杂的、有规律的、在教师引导下的认识过程。
小学生学习数学的过程,是一种复杂的、有规律的、在教师引导下的认识过程。在教学中,可以结合具体教学内容,根据认知发生原理,按照“实验探索——猜想论证——应用推广”这一人类掌握数学的思维活动序列设计教学程序。现以“方圆率”一节练习课为例,谈小学数学教学设计。

一、实验探索

爱因斯坦说过,提出一个问题,往往比解决一个问题更为重要。在教学中,教师首先应该注意创设情境,让学生带着疑问积极思维,去“实验”、去“探索”、去“发现”……。例如在讲授“方圆率”时,教师可设计以下步骤引导学生进行探索发现。

1.设疑引思

(1)右图正方形的面积是25平方厘米,求图中阴影部分的面积。附图{图}

学生根据5×5=25,可得知正方形边长是5厘米,同时还知圆的直径也是5厘米,于是圆的面积、阴影部分的面积均可求出。

(2)如果右上图正方形的面积是10平方厘米,求阴影部分的面积。

此题用上面的方法无法求出正方形的边长(圆的直径),也就是说在小学生现有的知识库中,无法找到现成的解答方法。怎么办呢?这时教师可引导学生另辟蹊径。

2.实验探索

组织学生按下面步骤进行实验探究。

(1)计算全班分成四个小组,分别依次计算出边长是1、2、3、4、5、6、7、8、9厘米的正方形面积和直径是1、2、3、4、5、6、7、8、9厘米的圆的面积,以及圆面积与正方形面积的百分比。

(2)汇报请各组选出代表汇报计算结果,并填好下表。

直径12345圆形面积0.7853.147.06512.5619.625边长12345正方形面积1491625圆面积占正方形面积的百分比78.5x.5x.5x.5x.5%直径6789……圆形面积28.2638.46550.2463.585……边长6789……正方形面积36496481……圆面积占正方形面积的百分比78.5x.5x.5x.5%……
您可以访问中国科教评价网(www.NsEac.com)查看更多相关的文章。


(3)观察观察比较上表,学生初步发现:如果圆的直径和正方形的边长相等,那么当π取3.14时,圆面积占正方形面积的百分比均为78.5%。

二、猜想论证

数学方法理论的倡导者G.波利亚曾说过,在数学领域中,猜想是合理的、值得尊重的,是负责任的态度。他认为,在有些情况下,教猜想比教证明更为重要。他说,如果在学习数学时还有数学发现方面的什么事情可以做的话,就必须使学生有个提问题的机会,在这些问题中他得在一定水平上,首先是猜想,然后是证实一个数学事实。然而普通教科书不提供那样的机会。所以,在教学中当学生初步发现问题后,还要按照“问题→反复思索→联想、顿悟→提出假说→验证结论”这个数学猜想的思维模式进行教学。例如教师在学生初步发现问题的基础上,可引导他们对上面的发现进行反复思索、分析概括,并由“圆周率”通过联想、顿悟后提出有关“方圆率”的猜想:如果圆的直径和正方形的边长相等,那么圆面积占正方形面积的比是一个固定的数。共2页: 1 [2] 下一页 论文出处(作者):
小学数学自主解决问题课堂教学模式的研究
谈小学数学课的导入和课末的小结
    上一篇:职业教育发展战略目标的三大思考(1) 下一篇:没有了