计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

网络信息挖掘系统评价初探

2018-06-26 01:56
导读:教育论文毕业论文,网络信息挖掘系统评价初探怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考: 【正文】  随着电子商务的蓬勃兴起,许多企业已经开始

【正文】
  随着电子商务的蓬勃兴起,许多企业已经开始意识到其所拥有的丰富的信息资源在商业决策中具有潜在的巨大商业价值。更好的决策支持需求和企业电子商务的开展正推动着网络信息挖掘系统的研究与开发。
  鉴于网络信息挖掘是在数据挖掘的基础上发展起来的,因此对于网络信息挖掘系统的基本问题,本文仍将利用数据挖掘系统的基本理论来描述。
  目前,由于网络信息挖掘系统的发展正在起步阶段,因此它的分类还无法达到数据挖掘系统分类那样细致。具体而言,对网络信息挖掘系统分类可以从商业能力、挖掘数据类型、挖掘功能、数据分析方法和应用领域角度进行。其中商业能力角度的分类与数据挖掘系统的商业能力分类完全相同,即分为商业产品和研究原型。而从另外几个角度看,网络信息挖掘系统的类型具有自身一些特点,例如从应用领域角度看,网络信息挖掘系统可以分为面向电子商务型、面向远程教育型、面向旅游型、面向广告业型等。随着网络信息挖掘技术的进一步发展,将出现更加丰富的网络信息挖掘系统类型。
      1 系统评价现状调查
  据调查,目前国内外还没有出现完全针对网络信息挖掘系统的评价成果,因而对网络信息挖掘系统的评价具有一定的创新性。笔者认为,对网络信息挖掘系统的评价可以充分地借鉴数据挖掘系统的评价方法。应该说这两类系统在很多评价指标上都有重合。
  从国外来讲,1998年前后已经有一些研究人员和机构对数据挖掘系统进行了一定的评价研究。他们所采用的评价体系各有特点,以下是一些简要介绍。
  1)J.F.Elder等人主要对17种数据挖掘系统进行了评价[1],其中包括了著名的Clementine、IntelligentMiner系统。这些系统具有以下共同的特点:单平台(StandAlone)、多用途、支持多种模式和分类算法,并支持模式构建中的项目阶段。他们主要从6大方面对这些系统进行比较,除此之外,他们还单独从用户端角度对数据挖掘系统性能进行评价。他们认为并非支持的算法越多越好,各种算法面对不同的问题其解决能力也是不同的,它们具有自身的优点与缺点。在文章的最后,还对这17种产品的优势/劣势作了总体的描述性评价。 (科教论文网 lw.nSeAc.com编辑发布)
  2)M.A.King等人针对14种桌面型数据挖掘系统[2],重点对各个系统的特征和性能进行比较。他们选用了20个评价指标,并设计了一个标准的评价过程——6分制评分标准来评价各种软件工具的优点和缺点。他们评价的特色在于针对4种算法的产品分别评价,并采用4类数据集测试系统的性能。他们认为网络法(PolynomialandNeural)要比分割法(TreesandRules)更精确,另外也提出可以加入计算机环境、数据库连接性、提供商的稳定性等指标进一步评价。
  3)D.W.Abbott等人主要针对高端型(High-end)用于欺诈甄别的数据挖掘系统进行了评价[3]。尽管仅选择了5个系统(Clementine、IntelligentMinerforMata、Darwin、En-terpriseMiner、PatternRecognitionWorkbench)进行评价,但是他们针对这5个专门应用于欺诈甄别的系统进行了细致的比较。
  4)M.Goebel等人将数据库中知识发现(KDD)与数据挖掘结合到一起评价[4]。他们在介绍一般知识发现任务以及解决这些任务的方法基础上,主要调查了43种提供这类功能的软件工具。这些工具既包括研究的原型系统,也包括已经商业化的产品。其中有较为著名的Clementine、DBMiner、IntelligentMiner系统。他们采用了一个系统特征分类体系对上述产品进行比较,并提出一些尚待解决的问题:如不同技术的集成、可扩展性、与数据库的无缝集成、对正在变化中的数据进行管理以及非标准的数据类型等问题。
  5)J.Hah博士没有针对个别的数据挖掘系统具体评价,但他认为评价一个数据挖掘系统应包括如下几个方面[5]:数据类型、系统问题、数据源、数据控制的功能与方法、数据挖掘系统和数据库或数据仓库系统的结合、可伸缩性、可视化工具、数据挖掘查询语言和图形用户接口。

上一篇:当前高职高专学生思想道德教育新论 下一篇:没有了