计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

多分辨率图像实时采集系统的FPGA逻辑设计

2017-07-07 01:29
导读:理工论文论文,多分辨率图像实时采集系统的FPGA逻辑设计样式参考,免费教你怎么写,格式要求,科教论文网提供的这篇文章不错: 摘要:提出了一种基于FPGA的实时、多分辨率图像采集系统的控制
摘要:提出了一种基于FPGA的实时、多分辨率图像采集系统的控制逻辑设计方案;并对其中的图像数据预处理和帧存乒乓刷新机制这两个关键技术进行了阐述;为了验证图像采集系统在整个图像处理系统中所起的作用,还对图像压缩系统的帧率进行了比较实验。实验结果表明,设计并实现的图像采集系统不仅运行稳定,而且显著提高了图像处理系统的整体性能。

随着数字多媒体技术的不断发展,数字图像处理技术被广泛应用于可视电话、电视会议、监控系统等各种民用、商用及工业生产领域中。但在这些数字图像处理系统中,一个突出的问题就是数据量庞大,特别是在图像帧率及分辨率要求比较高的场合下,仅用专用的视频压缩芯片(Video ASIC)、专用的视频信号处理器(Video DSP)或通用的高性能数字信号处理芯片(DSP),均无法获得令人满意的效果。为此,人们提出了多种解决方案,其中比较有代表性的方案有以下两种:

一是在中央控制器的调度下,两片或多片图像处理主芯片并行对图像进行处理。

二是整个图像处理系统由图像采集系统和图像压缩系统组成,其中图像采集系统负责接收原始的图像数据并对其进行一定的预处理;图像压缩系统负责接收图像采集系统预处理后的数据并进行压缩。

本文将基于第二种方案,分析其中图像采集系统的控制逻辑设计思想;并结合图像压缩算法的需求,着重介绍图像数据预处理的控制流程及实现方法;最后通过实验,对预处理前后图像处理系统的效率进行比较分析。

1 图像采集系统的结构及工作原理

本文以高性能、高集成度、低功耗系列FPGA作为核心部件,利用FPGA的在系统可编程以及控制逻辑实现方式灵活等特点,设计出图像采集系统。该系统能够满足多分辨率灰度和彩色图像的实时压缩处理要求,其硬件结构如图1所示,主要包括A/D转换部分、帧存部分和核心控制部分。下面分别对这三个部分进行介绍。

1.1 A/D转换部分

A/D转换部分即图1中的视频解码器,用来完成模拟视频信号到数字信号的转换,产生复合的YUV数据流,并送入采集系统的FPGA中。 (科教作文网http://zw.NSEaC.com编辑发布)

A/D转换部分所选用的视频解码器是Philips公司的视频A/D芯片SAA7111A_4,它不仅具有自动场频检测牧场 生而且其场同步参考信号VREF、行同步参考信号HREF、奇偶场标志信号RTS0、像素时钟信号LLC2幸免可从芯片的输出管脚直接得到,从而简化了时钟锁相与同步功能模块的设计,使整个系统的性能和稳定性均有所提高,同时减少了整个系统的功耗[2]。

1.2 帧存部分

帧存部分采用双帧存结构,包括图1中的帧存A与帧存B,每个帧存由两片IDT71V424 SRAM构成,能够存放720X576分辨率的一帧YUV图像数据。由于采用了乒乓机制,这种结构能够使图像数据的采集与压缩并行,从而提高图像的压缩帧率。

1.3 核心控制部分

采集系统的核心控制部分即图1中的FPGA。首先对A/D转换部分的输出数据流进行一定的预处理;其次将预处理后的数据在帧存乒乓、刷新机帛的控制下写入适当帧存中;最后完成与图像压缩系统的接口控制,即适时帧存的控制权转交给图像压缩系统,由图像压缩系统将帧存中的数据读出后释放帧存的控制权。另外本部分还负责接收用户输入的图像分辨率、色彩以及相应压缩码流传输信道的带宽等控制信息,并在这些信息发生变化时用中断的方式通知图像压缩系统。

上一篇:应用McBSP实现I2C总线控制器 下一篇:没有了