论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
帕金森病是一种慢性神经系统退行性疾病,是由中脑黑质致密部多巴胺神经元选择性变性死亡、纹状体多巴胺减少所致,其发病机制目前并不很清楚。在提出的各种假说中,人们越来越重视线粒体功能异常在帕金森病发病中的作用[2,3]。
线粒体呼吸链是体内氧自由基产生的主要部位,呼吸链中任何部位受到抑制都会使自由基产生增多。PD患者黑质中线粒体酶复合体Ⅰ缺陷会导致自由基产生增多,ATP合成减少。能量的减少会造成细胞内外离子失衡,膜电位下降,导致一些电压依赖的Ca2+通道的持续开放,造成Ca2+急剧内流,细胞内Ca2+增多,耗竭细胞内ATP,同时通过活化蛋白酶、脂肪酶、核酸内切酶,介导了兴奋毒性的细胞损伤,造成神经元死亡。
近年来还发现,线粒体控制核的程序化死亡(apoptosis),体外试验表明低浓度的MPP+对酶复合体Ⅰ的抑制可以造成培养的多巴胺能神经元的程序化死亡,而高浓度主要引起细胞的坏死。Mochizuki等发现PD患者黑质致密带多巴胺能神经元呈现程序化死亡,这些结果提示,在PD多巴胺能神经元死亡的早期,可能存在由酶复合体Ⅰ抑制引起的程序化死亡,以后随着生化缺陷的加剧,而出现由程序化死亡向坏死的转变。表明在PD早期如能改善线粒体功能,阻止程序化死亡加剧,将有助于保护残存的神经元,阻止疾病进程。
2.2 线粒体与阿尔茨海默病(Alzheimer’s disease ,AD)
阿尔茨海默病(AD)作为老年性痴呆的一种重要类型,是中枢神经系统的一种渐进性退行性疾病。目前,AD的病因研究较多,其中线粒体因在能量代谢、自由基产生、衰老和神经退行性变等方面的特殊作用而倍受关注。
线粒体功能异常可导致一系列相互作用的损伤过程:能量代谢障碍以及基于钙稳态破坏和活性氧产生为基础的神经元兴奋性毒性。许多证据表明,线粒体能量代谢障碍在AD的发生中占有重要地位。正电子断层扫描( Positron emission tomography, PET) 检查显示AD患者脑组织氧化,并且能量代谢受损,表现为脑部葡萄糖利用减少,脑脊液中乳酸含量增高,而琥珀酸、延胡索酸、谷氨酰胺含量降低,这些表明AD患者脑线粒体氧化代谢过程受损。神经元能量代谢障碍和兴奋性毒性作用可升高细胞内Ca2 +水平,导致活性氧等自由基的产生。由于AD患者脑部神经元中线粒体DNA氧化程度为正常水平的3倍,说明引起氧化损伤的自由基可能主要来源于线粒体。
线粒体损伤及功能改变在细胞凋亡中发挥重要作用:线粒体呼吸功能的降低、氧化磷酸化-电子传递偶联受损、膜电位降低等线粒体功能的改变(其变化早于核固缩和细胞膜完整性的破坏),最终导致AD患者的神经细胞凋亡。
2.3 线粒体与线粒体糖尿病(Maternally inherited diabetes)
线粒体基因突变糖尿病是糖尿病单基因致病类型。在最新的糖尿病分型中把其列为特殊类型糖尿病,属于β细胞遗传缺陷疾病。
线粒体糖尿病人mtDNA基因的3243位点处鸟嘌呤取代了腺嘌呤,有研究认为该突变引起mtDNA转录和翻译的异常,致使mtDNA氧化磷酸化(OXPHOS)过程受损,无法产生足够的ATP,从而使β细胞胰岛素分泌受到抑制。同时,自由基产生过多,使线粒体功能进一步受损,严重时β细胞可死亡。骨骼肌同样也存在OXPHOS障碍,外周葡萄糖摄取减少,肌肉的糖酵解增加,从而促进乳酸循环,肝糖异生亢进,致血糖增高。
2.4 线粒体与肿瘤(Cancer)