计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

“三角形的中位线”教学设计案例(2)

2013-07-15 01:12
导读:教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。 学具:三角形纸片、剪刀、刻度尺、量角器。 二、 教学过程 1.一道趣题课堂因你而和谐 问

        教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。
学具:三角形纸片、剪刀、刻度尺、量角器。
        二、 教学过程
        1.一道趣题——课堂因你而和谐
问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)
        (这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)
        学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.
如图中,将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。
        问题:你有办法验证吗?
        2.一种实验——课堂因你而生动
        学生的验证方法较多,其中较为典型的方法如下:
        生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。
        生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。
        生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。
        引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?
        3.一种探索——课堂因你而鲜活 (转载自http://zw.NSEAC.com科教作文网)
        师:把连接三角形两边中点的线段叫做三角形的中位线.(板书)
        问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?
        (学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)
        学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE=EC,BF=FC,BD=AD,
        △ ADE≌△DBF≌△EFC≌△DEF,DE=BC,DF=AC,EF=AB ……
        猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书)
        师:如何证明这个猜想的命题呢?
        生:先将文字问题转化为几何问题然后证明。
        已知:DE是ABC的中位线,求证:DE//BC、DE=BC。
        学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。
        (学生积极讨论,得出几种常用方法,大致思路如下)
        生1:延长DE到F使EF=DE,连接CF
        由     △ADE≌△CFE(SAS) 
上一篇:二分法求解单变量非线性方程及其应用与实现 下一篇:没有了