计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

“三角形的中位线”教学设计案例(4)

2013-07-15 01:12
导读:分别是四边的中点,求证:四边形EFGH是平行四边形。 证明:连结AC ∵ E、F分别是AB、BC的中点, EF是ABC的中位线, EF∥AC且EF=AC, 同理可得:GH∥AC 且GH=A

        分别是四边的中点,求证:四边形EFGH是平行四边形。
        证明:连结AC
        ∵ E、F分别是AB、BC的中点,
        ∴ EF是ABC的中位线,
        ∴ EF∥AC且EF=AC,
        同理可得:GH∥AC 且GH=AC,
        ∴ EFGH,
        ∴四边形EFGH为平行四边形。(板书)
        其它解法由学生口述完成。
        8.一种引申——课堂因你而让人回味无穷
        问题:如果将上例中的“任意四边形”改为“平行四边形、矩形、菱形、正方形”,结论又会怎么样呢?(学生作为作业完成。)
        9.一句总结——课堂因你而彰显无穷魅力
        学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业)
        三、板书设计
        三角形的中位线
        1.问题                         
        2.三角形中位线定义            
        3.三角形中位线定理证明        
(转载自http://zw.NSEAC.com科教作文网)

        4.做一做  
        5.练习
        6.小结 
        四、课后反思  
        本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索—发现—猜想—证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
        本节课中学生的“同一法”给了我们很多的启示:虽然在平时的教学中,笔者也尽力放手让学生们探索和创新.但仔细想想,他们的那些“创新”都局限于事先设计好的范围之内,而本节课中学生的“同一法”却是从变化的、动态的观点去看待问题,完全超出了笔者的“预设”,课堂因此而变得更精彩。笔者深深地感到一个理想的课堂应该是走进孩子们的心里、听到孩子们心声的课堂。因为只有融入了孩子们发自内心的感受和爱,课堂才会更加精彩!

上一篇:二分法求解单变量非线性方程及其应用与实现 下一篇:没有了