计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

非负矩阵谱半径估计的研究

2013-09-02 01:19
导读:数学论文毕业论文,非负矩阵谱半径估计的研究怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考: 摘 

摘 要

本文目标为讨论非负矩阵谱半径估计1类方法。在盖尔圆盘定理及Frobenius界值定理基础上,对这类方法给出不同程度的改进,使新界值更精确。
利用Perron补的概念,提出非负不可约矩阵谱半径界值的1个新的估计算法。该算法利用Perron补保持原矩阵的非负不可约性及谱半径的性质,使新得到的矩阵最大行和变小,最小行和变大,从而得到比Frobenius界值定理更精确的界。详细论述算法思想并给予严格证明。给出适当的数值例子,比较新算法相对于Frobenius界值定理的改进效果,最后简要评价各算法,并讨论矩阵特征问题的研究方法。

关键词  非负矩阵;谱半径;界;估计;Perron补

Abstract

This paper focuses on discussion of a class of estimation methods for spectral radius of nonnegative Matrix.based on Gerschgorin Disk theory and  Frobenius’theory,these methods improve the former theories and provide sharper bounds.
Furthermore,the concept of  Perron complement is introduced a new estimating method for spectral radius of nonnegative irreducible matrix is proposed and explained in detail.A new matrix dereved preserves the spectral radius while its minimun row sum increases and its minimun row sum decreases.Detail designing method and strict proof are provided with illustration of numerical examples.Finally,these algorithms’characters and the studying methods for matrix eigenproblems are also briefly discussed.
Keywords   nonnegative Matrix;spectral radius;bounds;estimation;Perron complement

    上一篇:用多种群遗传算法求解车辆路径问题 下一篇:没有了