计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

探索,猜想,论证

2014-03-22 02:33
导读:物理论文毕业论文,探索,猜想,论证怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考:小数学的过程,是一种复杂的、有规律的、在教师引导下的认识过程。在教学中
小数学的过程,是一种复杂的、有规律的、在教师引导下的认识过程。在教学中,可以结合具体教学内容,根据认知发生原理,按照“实验探索——猜想论证——应用推广”这一人类掌握数学的思维活动序列设计教学程序。现以“方圆率”一节练习课为例,谈小学数学教学设计。

一、实验探索

爱因斯坦说过,提出一个问题,往往比解决一个问题更为重要。在教学中,教师首先应该注意创设情境,让带着疑问积极思维,去“实验”、去“探索”、去“发现”……。例如在讲授“方圆率”时,教师可设计以下步骤引导进行探索发现。

1.设疑引思

(1)右图正方形的面积是25平方厘米,求图中阴影部分的面积。附图{图}

根据5×5=25,可得知正方形边长是5厘米,同时还知圆的直径也是5厘米,于是圆的面积、阴影部分的面积均可求出。

(2)如果右上图正方形的面积是10平方厘米,求阴影部分的面积。

此题用上面的方法无法求出正方形的边长(圆的直径),也就是说在小现有的知识库中,无法找到现成的解答方法。怎么办呢?这时教师可引导另辟蹊径。

2.实验探索

组织按下面步骤进行实验探究。

(1)计算全班分成四个小组,分别依次计算出边长是1、2、3、4、5、6、7、8、9厘米的正方形面积和直径是1、2、3、4、5、6、7、8、9厘米的圆的面积,以及圆面积与正方形面积的百分比。

(2)汇报请各组选出代表汇报计算结果,并填好下表。

直径12345圆形面积0.7853.147.06512.5619.625边长12345正方形面积1491625圆面积占正方形面积的百分比78.5%78.5%78.5%78.5%78.5%直径6789……圆形面积28.2638.46550.2463.585……边长6789……正方形面积36496481……圆面积占正方形面积的百分比78.5%78.5%78.5%78.5%…… (科教论文网 lw.nseaC.Com编辑发布)

(3)观察观察比较上表,初步发现:如果圆的直径和正方形的边长相等,那么当π取3.14时,圆面积占正方形面积的百分比均为78.5%。

二、猜想论证

数学方法理论的倡导者G.波利亚曾说过,在数学领域中,猜想是合理的、值得尊重的,是负责任的态度。他认为,在有些情况下,教猜想比教证明更为重要。他说,如果在数学时还有数学发现方面的什么事情可以做的话,就必须使有个提问题的机会,在这些问题中他得在一定水平上,首先是猜想,然后是证实一个数学事实。然而普通教科书不提供那样的机会。所以,在教学中当初步发现问题后,还要按照“问题→反复思索→联想、顿悟→提出假说→验证结论”这个数学猜想的思维模式进行教学。例如教师在初步发现问题的基础上,可引导他们对上面的发现进行反复思索、分析概括,并由“圆周率”通过联想、顿悟后提出有关“方圆率”的猜想:如果圆的直径和正方形的边长相等,那么圆面积占正方形面积的比是一个固定的数。

最后再启发对这一猜想进行论证(直观的验证或逻辑的证明),使他们真正理解“方圆率”。

a设正方形的边长为a,则面积为S[,正]=a[2];圆的半径为─,则2a圆的面积为S[,圆]=(─)[2]π。2aa[2](─)[2]π──πS[,圆]24πS[,圆]π因为───=──────=────=─,所以───=─,证毕。S[,正]a[2]a[2]4S[,正]4

三、应用推广

“读书是,使用也是,而且是更重要的。”教学中,当理解了所学的知识以后,教师还要引导他们将所学的东西用心消化,吸收到自己的知识系统中,吸收到者的整体智力结构中,使得这些知识能在更广泛的情境中得到应用和扩展。例如理解了“方圆率”以后,可设计出以下不同层次的练习题启发回答,这样可深化他们对知识的理解与掌握,培养了创造能力。

(科教论文网 lw.NsEac.com编辑整理)



1.基本训练

已知右图正方形面积是10平方厘米,求阴影部分面积。附图{图}

依据上面的规律,便可进行如下计算。附图{图}

2.变式训练

(1)用硬纸做一个边长为10厘米的正方形和一个直径为10厘米的圆,再将圆剪成两个半圆。

①引导用两个半圆在正方形里摆各种图形。如:附图{图}

②启发讨论,总结出求图中阴影部分面积的方法:πS[,阴]=S[,正]×(1-──)。

(2)用硬纸做一个边长为10厘米的正方形和一个直径为10厘米的1圆,再将圆剪成四个──圆。

①引导用四块──圆在正方形内摆各种图形,如:附图{图}

②启发认真观察,讨论总结出求图中阴影部分面积的方法:πS[,阴]=S[,正]×(1-──)。

3.拓展训练

(1)用硬纸做一个边长为10厘米的正方形,并在正方形内画一个最大的圆。

①把这个正方形平均分成两等份(如图),启发讨论总结出每份图中阴影部分面积的求法:附图{图}

②把这个正方形平均分成四等份(如图),启发讨论总结出每份图中阴影部分面积的求法:附图{图}

(2)用硬纸做若干个边长均为10厘米的正方形,并在每个正方形内画一个最大的圆。

①用这些小正方形摆成一个大正方形(如图),启发讨论总结出求图中阴影部分面积的方法:附图{图}

②用这些小正方形摆成一个长方形(如图),启发总结出求图中阴影部分面积的方法:附图{图}

多年的教改实践结果显示:结合教材和实际,按照人的认识进化过程或发生过程,采用“再创造”的教学模式进行教学,既有利于对知识的理解与掌握,又可使他们的形象思维、抽象思维和顿悟思维得到发展,在教学()的全过程中还领悟到了创造科学的伟大智者们,在那条荆棘丛生的科学研究的道路上奋力攀登的风采,从而培养了他们的创造精神。 (科教范文网http://fw.ΝsΕΑc.com编辑)
 

作者:刘庠 
    上一篇:提高空间想象力的有效途径 下一篇:没有了