论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
[ 摘要 ] : 基于对智能研究历史及现状的反思,以专长研究为视角,对智能的本质、来源、范围、生成路径等问题加以讨论。认为:智能本质上是发展中专长的形式,其来源于知识结构与加工能力的互动,其生成路径为蓄意的练习,其范围具有领域限制的特征。
一、对现代智能研究的反思
在智能的研究方法上 , 现代心理学中一直存在着两个分支 , 一为相关方法的分支 , 另一个是实验方法的分支 , 前者形成智能研究的心理地图模式,后者形成计算模式。第一,早期的智能研究体现了心理地图模式。心理地图模式将智能视作心理地图,由此形成智能的结构理论(如斯皮尔曼的智力二因素理论、卡特尔的流体智力和晶体智力理论、瑟斯顿的基本心理能力理论、吉尔福特智力结构模型、阜南的智力层次结构模型等)。结构理论主要关注于对智能结构进行静态描述,企图分析出组成智能的各项子能力。第二, 20 世纪 60 年代,信息加工心理学得以蓬勃发展,其理论开始被借用到智能研究中,逐渐形成智能研究的计算模式。计算模式将智能视作具有信息加工功能的计算性装置,以实验方法为基础构建了智能的信息加工理论(如加德纳的多元智力理论、戴斯的 PASS 智力模型、斯腾伯格的三元智力理论等)。这些理论认为智能是人脑对各种信息进行加工、处理的能力,重点分析智能的内部活动过程,摒弃剥离智能结构的传统,并日益重视元认知成分的作用。这两种模式构成现代智能研究的主流理论。
但长期以来,智能结构理论一直颇受指责。由于建构结构理论的方法学(以因素分析法为核心)存在某些先天不足,从而使这些理论很少涉及智能活动的内部心理过程;同时,这些智能结构理论难以得到整合;此外,根据这些理论编制的智力测验,也只停留在测量各种反映个体差异的智能构成因素上,难以对内在心理过程作进一步揭示。智能的信息加工理论比之结构理论有所进步,开始从仅仅描述智能的结构转化到着眼于从智能的内部活动分析智能的运作机制。但遗憾的是,这种进步也未能彻底回答一个根本性的问题:导致一个人高智能表现的原因是什么?智能是怎样获得的?如果仅仅把智能看作是遗传的结果,显然缺乏说服力并具有悲观主义的倾向;如果把高智能归结为信息加工过程的高效,那么这种高效信息加工的原由仍不清楚。
事实上自 20 世纪 70 年代起,已有一些研究者认识到如果依旧以智能结构或运作机制为标靶进行研究,则对上述批评无济于事,他们开始另辟蹊径。这些研究者发现,某一领域的专家在该领域中能够深刻地表征问题、高效地记忆、合理地推理、快速地解决问题,表现出一种外化的高智能行为(也称为专长行为)。这些研究者认为,如果采用专家 ---- 新手比较以及计算机模拟的方式,对专家的这种专长行为的来源及影响因素进行分析,则可间接揭示专家高智能的本源。这一新兴的研究路线被称为专长研究。专长研究与主流智能研究间并非非此即彼的关系,后者关注揭示智能的结构和运作机制,而前者关注研究智能所利用的 “ 材料 ” ,即知识在人类智能中的作用,期望从另一个角度诠释人类智慧的实质。一般认为,以专长为视角对智能作系统的理论与经验的研究,始于德格鲁特对奕棋专长的创新工作;而引发对该主题作交叉学科研究的主要激励,一般归结于蔡斯和西蒙论 “ 棋艺中的慧眼 ” 一文。专长研究经过 30 余年的发展,影响力不断提升并显示出进一步增强的趋势,其对智能的认识日臻系统和成熟。但遗憾的是,我国学界对专长研究的了解和关注稍嫌不足,对专长研究视野下的智能观认识也比较欠缺。
二、以专长研究为视角看人类智能
专长研究发展至今,已对智能的范围、来源、本质、生成路径等问题形成较独特的观点,对我们更深入理解人类智能具有一定启发意义。需要提及的是,专长研究并未建构某一智能结构或加工理论,而是从广泛范围对智能的一般论题提出自己的看法。
1 、智能的范围:领域限制
反思智能结构理论与信息加工理论可发现,二者均将智能视为人类拥有的一般能力,能够运用于广泛的领域当中。百年的智力测验历史也体现出这一观念,各种智力测验总是试图测量某种单纯的 “ 能力 ” ,排除个体相关领域经验的作用。该观念似乎隐含着这样一个推论:即高智能的个体在不同领域应均能表现出高智能的行为,这显然与现实观察的结果相悖,事实上,个体恰恰只能在其专长的领域表现出高智能行为。
提出上述质疑并非对是对智能结构理论与信息加工理论的否定,而是想澄清这样一个事实:即将智能视为领域间的一般能力同将智能视为与相关经验密切联系的领域内能力即使在智力测验出现之初,亦是两条并行的路线,只不过后者未被赋予更多关注而势单力薄。在比纳和西蒙( 1905/1916 )开创智力测验之初,他们就已区分出两种智能评价的方法:心理学方法( Psychological method )和教育学方法( Pedagogical method )。前者涉及对记忆力、决策及一般知识的测量;后者涉及依据某领域获得知识及经验的总量对智能进行评估。比纳和西蒙最终决定关注前者而忽略后者,因为他们希望 “ 不考虑 …… 个体拥有的受教育的水平 ” ,并认为: “ 我们相信我们已经成功地彻底排除了个体已获得的信息 ” 。
百年来的智力测量实践深受比纳和西蒙将领域内的相关经验排除出智能范畴的影响。不可否认,传统智力测验在预测儿童的学业成就时是必要的,并能在一定程度上预测青春期少年的学业成就(这时课堂及学校中的经验开始累积)。但是,传统智力测验在预测大学生的成就及未来专家在某一特定领域的成就时,只能提供有限的效用。对传统智力测验效用有限性的反思启发我们应当回归智能评估的教育学方法传统,从领域内能力角度看待智能。
专长研究是回归教育学评估方法的典型代表,并已引发研究者对该主题的更多关注。大量实证研究证实,专家的高智能局限于其所善长的特定领域,且与在该领域长期的经验相关。若以领域内能力看待智能,则可有效预测个体在某领域未来的成就,并可为进一步探讨智能的来源和生成提供可能。事实上,这一理念正被广为接受,最近美国大学的入学测验已开始讨论 “ 专长(倾向)测验 ” 与 “ 智力测验 ” 之争。[ 3 ]
2 、智能的来源:知识结构与加工能力的互动
智能的来源是有关智能的根本性问题,智能结构理论和信息加工理论实际并未对此作回答。无论是以解构智力构成的子能力还是以探索智能成分的运作机制为目的,二者均事先假设已存在 “ 智能 ” 这一实体。至于这一 “ 智能 ” 实体从何而来或忽略不谈,或认为是 “ 遗传与环境交互作用的结构,人们在早年就具有的获得成就的相对固定的潜能 ” ,或更简单地认为是某种 “ 原生的模仿能力 ” 。将智能视为领域间的广泛能力制约了传统智能理论对智能来源进行深入研究。
共2页: 1
论文出处(作者):