计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

数学美与数学教学(1)

2017-11-21 06:42
导读:教育论文毕业论文,数学美与数学教学(1)在线阅读,教你怎么写,格式什么样,科教论文网提供各种参考范例: 学生对数学的态度有惊人的差异,这很大程度上归因于对数学美的领悟
学生对数学的态度有惊人的差异,这很大程度上归因于对数学美的领悟和鉴赏。数学美是一种极其严肃、雅致和含蓄的美,学生受到基础知识和审美能力的限制,并不都具有理想的鉴赏能力。因此,唤醒他们对数学的美好情感,倡导对数学美的崇尚是数学教育的任务之一
  一、数学知识的结构美与教学
  数学基础知识主要包括数学概念、命题、法则以及内容所反映出来的数学思想方法。数学知识的和谐美和简练美是数学知识结构美的两个主要方面。
  数学知识的和谐美是数学的普遍形式。教学时,教师不但要对这种美有较深刻的领悟,且要能艺术地表现出来。例如,在推导椭圆的标准方程时,由定义“到两定点F[,1](c,0)和F[,2](-c,0)距离之和为定长2a的点的轨迹”可直接写出方程:。这个方程能正确地表达椭圆的代数形式,但比较复杂,更不便于计算,故化简整理成。方程中的b开始似乎纯粹是为了追求方程的和谐美而引进的,但在研究椭圆性质时,可进一步发现a、b恰好为椭圆的长、短半轴长,b竟有鲜明的几何解释。人们内心世界所追求的美恰好在外部世界得到如此完美的表现,这实际上也体现了美与美之间和谐的统一。教师在推导过程中的示范,唤醒了学生的审美意识,学生也进入到美的境界,得到美的享受。在此基础上,让学生根据定义画出椭圆,且要求他们用生动形象的数学语言表达自己的思维活动。这样,再让学生感受和体验美的同时,激励他们创造美,使数学美在教学中的作用发挥得淋漓尽致。
  数学知识的简练美是数学的主要艺术特色。“数的整除”一章是《初等数论》中的一部分,为了照顾小学生的年龄特点,教材进行了简化处理,结构如下图:
  附图
  由图看出,本章以倍数、约数为核心构建了知识的结构美。事实上,对简练美的追求是数学研究的一部分,它促进了数学理论的发展,也有益于知识的系统化。而数学知识的系统性,成为知识发展的主要特点:数学内容的发生和发展都是与它的知识点的形成分不开的,若干个知识点之间的联系,既具有纵向的顺序性,又具有横向的层次性。

(科教论文网 lw.nSeAc.com编辑发布)


    二、数学思维的协同美与教学
  数学思维是人脑和数学对象交互作用并按一般的思维规律认识数学规律的过程。数学思维的协同美大体上可从以下两个方面表现出来。
  归纳和演绎的相互作用。数学中大量地需要归纳,同时也需要演绎,在许多情况下两者互为作用的。在数学教学中,总是既用归纳又用演绎。尽管两者有各自不同的特点,但演绎推理的大前提——表示一般原理的全称判断要靠归纳推理来提供。为了增强归纳推理的可靠性,不管是以一般原理作指导还是对归纳推理的前提进行分析,都要用演绎推理。归纳和演绎在思维运行过程中这种辩证统一正体现了两者之间是交互为用的。
  在小学数学中,限于儿童的认知水平,数学知识的出现,较多地依赖于直观、实验和归纳,适当地进行演绎,以不断提高学生的逻辑推理能力。例如加法交换律,最早出现在一年级,显然不可能进行演绎论证,只能通过计算实践,由8 5=13,5 8=13等归纳出加法交换律,但在对加法交换律的反复应用中又让学生领会演绎思想,因此,在教学中要贯彻“归纳与演绎交互为用”的原则。共2页: 1 [2] 下一页 论文出处(作者):
谈小学数学课的导入和课末的小结
采访质量控制数学模型研究
    上一篇:信息技术与音乐教学整合初探(1) 下一篇:没有了