计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

浅析贝叶斯网络在自适应超媒体系统中应用研究(3)

2014-06-20 01:11
导读:(2)条件分割。设变量A的取值范围为:A。,A2,…,,则将原来的贝叶斯网络分割成n个网络,分别是A=A。,A=A2,…,A:。这种方法称作分割,如图2所示。

   (2)条件分割。设变量A的取值范围为:A。,A2,…,,则将原来的贝叶斯网络分割成n个网络,分别是A=A。,A=A2,…,A:。这种方法称作分割,如图2所示。

  (3)贝叶斯网络举例。图3显示了一个贝叶斯网络的例子,它模型化了下述的二进制变量:变量a表示病人的年龄大于75岁,变量b表示病人需要戴眼镜,变量c表示病人眼中出现晶状体,变量v表示病人的视力由于眯眼而有所提高,变量s表示病人抱怨视力差,变量r表示病人的视网膜反射可察觉。在这个贝叶斯网络中,变量a与b之间的弧表明相对于其它变量,a与g是直接依赖的。变量a与s之间没有弧相连,它们是通过变量b与C而发生依赖关系。

  变量间依赖的强弱由条件概率分布函数Bp量化。例如,当a为真,b为真的概率为P(b=TIa=T)=0.75。当给定了变量的父节点的值后,该变量为假的条件概率可以从此变量为真的条件概率中推导出来,在此就没有给出。

上一篇:浅析大学图书馆文化的基本特征 下一篇:没有了