论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
函数概念的“源”与“流
1.1函数概念的“源”
马克思曾经认为,函数概念来源于代数学中的不定方程的研究,由于罗马时代丢番图对不定方程已有相当的研究,所以函数概念至少在那时已经萌芽。
自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙的中心,它本身又有自转和公转,那么下降物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体和路线、射程的影响问题,既是科学家力图解决的问题,也是军事家要求解决的问题。函数概念就是从这些运动研究中引申出来的一个数学概念。在伽利略的力学著作《两门新科学》中用文字语言叙述了一些函数关系。如:“从静止开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比”。“沿着同高度但不同坡度的倾斜平板下滑的物体,其下滑时间与平板的长度成正比”。[5]等等这些叙述只需引进适当的数学符号就可表示为简洁、明确的数学关系,这些文字语言是早期函数概念的雏形。
17世纪上半叶,笛卡尔把变量引入数学,他指出了平面上的点与其数对 之间的对应关系。当动点作曲线运动时,它的 坐标和 坐标相互依赖并同时发生变化,其关系可由包含 的方程式给出。相应的方程式就揭示了变量 和y之间的关系,但由于当时尚未意识到需要提炼一般函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义。
从现存文献中可知,最早提出函数概念的,是17世纪德国数学家莱布尼兹。于1673年他用“函数”一词表示幂,如 都叫函数。随后在他的一部手稿里,他又用“函数”一词来表示任何一个随着曲线上的点变动而变动的量——例如:切线、法线、次切线等的长度以及纵坐标等。[6] 莱布尼兹的函数概念使用范围狭窄,后续的数学家在此基础上做了许多扩展工作。
1.2函数概念的“流”
随着近代数学的发展,人们对函数的认识越来越深刻。到了19世纪70年代,德国数学家康托集合论的产生后,建立了函数的结合对应定义,也就是用“集合”与“对应”来叙述:“给定两个集合A和B,如果按照某种确定的对应关系,对A的每一个元素,在B中都有唯一的元素与之对应,则这种对应关系称为从A集合到集合B的函数。类似于现在高中数学课本中的函数定义。 (科教范文网http://fw.ΝsΕΑc.com编辑)
20世纪初,生产实践和科学实验的进一步发展,又引起函数概念新的尖锐的矛盾。20世纪20年代,人类开始研究微观物理现象,1930年量子力学面世,在量子力学中需要用到一种新的函数—— -函数,即 。[17]
- 函数的出现,引起了人们激烈争论,按照函数原理定义,只允许数与数之间建立对应关系,而没有把“ ”作为数,另外对于自变量只有一个点不为零的函数,其积分值却不等于零的函数,这也是不可想象的。然而, -函数确实是实际模型的抽象。例如,当汽车、火车通过桥梁时,自然对桥梁产生压力,从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点 处压强是 ,其余点 处,因为无压力,故无压强,即 ,另外,我们知道压强函数的积分等于压力,即 。