论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
随着高速A/D转换技术和DSP技术的发展,中频数字处理技术亦得到发展。中频数字处理技术是提高现代通信接收机性能的重要技术之一。作为中频数字处理的核心器件,早期的A/D转换器由于速度和精度的限制,难以满足中频数字接收机高速数字化的要求。本文将以基于软件无线电技术的差分跳频电台中频数字接收机为例,给出一种基于新型ADC器件-AD6644的中频数字处理模块的设计方案。
1 系统总体结构设计
本方案的中频数字接收系统结构如图1所示。因差分跳频系统是一种异步跳频系统,省去了同步电路,结构得以简化。该系统主要由射频前端、中频预处理和中频数字处理三部分组成。系统主要功能为:工作在短波频段(2~30MHz),对跳频速率为5000跳/s、带宽为2.56MHz的信号进行不低于12bit的采样,以合适的数据率送入DSP,然后由DSP完成各种算法处理。
射频信号先经过2~30MHz的前置滤波放大电路放大。为了有效抑制组合频率干扰和副波道干扰,本系统的中频预处理部分采用高中频方案煟长牎P藕啪滤波放大后,再经二次下变频得到5.12MHz的低中频信号。该信号经带通滤波放大电路后,进入A/D采样。为了保证不发生频谱混叠,设计ADC的采样速率为8倍于信号带宽,即20.48MHz。关于二中频选择及采样速率的确定,请参见参考文献煟长牐这里不再赘述。采样后的数据率达到14bit×20.48MHz=286.72Mbit/s,经FIFO缓冲后,送入DSP进行正交变换、FFT、频点识别和解跳、信道译码等处理。下面着重就中频数字处理模块的硬件实现进行详细说明。
由图1可以看出,中频数字处理模块的主要功能是对5.12MHz中频的带通信号进行A/D转换,将采样数据经缓冲送入DSP进行处理。硬件设计主要包括ADC、FIFO、DSP三种器件的使用以及它们之间的两个接口,下面分别介绍。
2.1 ADC器件
ADC的采样率要求20.48MHz。对于2~30MHz的HF信号,在该采样速率下,要求ADC器件的动态范围达到60~90dB。美国AD公司的AD6644是理想的选择。
AD6644是一种具有14位精度、最高采样率为65MSPS的A/D转换器。主要特性有:多音无杂散动态范围(SFDR)达到100dB,典型SNR为74dB,功率耗散为1.3W,数字采样输出为2的补码格式,并且有数据输出指示信号DRY。
AD6644片上提供了采样保持电路和基准电位,使其能成为一个完整的A/D转换解决方案。AD6644的转换灵敏度达到134μV,在奈奎斯特带宽上获得了100dB的SFDR,大大增强了当其输入端存在杂散分量时从中检测出有用小信号的能力,这种突破性的改进放宽了多模数字接收机(软件无线电)的性能瓶颈。AD6644内部采用三级子区式转换结构,既保证了精度又降低了功耗。其内部结构框图如图2所示。