计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

论现代信用度量模型比较与实用性分析

2017-08-11 06:36
导读:毕业论文范文毕业论文,论现代信用度量模型比较与实用性分析怎么写,格式要求,写法技巧,科教论文网展示的这篇论文是很好的参考:     关键词:现代信用度量模型; 实用性   摘要:本文通过对现
  

  关键词:现代信用度量模型; 实用性
  摘要:本文通过对现代信用度量模型的比较,结合巴塞尔协议和我国的实际情况,对模型进行实用性分析。
  
  20世纪90年代,由于破产结构性增加,信用价差更具竞争性,抵押品价值波动大以及表外衍生信用风险管理的要求,现代信用风险度量模型得到了迅速的发展。现代信用度量模型较之传统的信用度量方法有着极大的优越性。
  
  一、现代信用度量模型的比较
  现代信用度量模型主要有以下几种:KMV模型、CreditMet?鄄rics模型、麦肯锡模型、CSFP信用风险附加法(CreditRisk+)以及死亡率模型(Mortality Rate)。总的说来,现代信用度量模型的共同之处在于利用现代计量分析技术,对违约概率进行量化,力图给出信用组合的收益分布或者损失分布,实现对信用风险的精确计量,从而确定可以承担的风险,为贷款合理、精确地定价,为实施贷款决策提供指导,并实现贷款组合分析,合理配置资本。
  当然,不同的模型具有各自不同的特点,现从如下几个方面进行比较:
  (一)风险的定义
  一般说来,信用风险度量模型可以分为两类:盯住信用等级变化对贷款理论市值影响的盯住市场模型(MTM)以及不考虑信用等级的变化、只考虑违约概率的违约模型(DM)。MTM模型在界定信用风险的范畴时,既考虑了信用等级的变化,也考虑了违约,并由此来计算贷款价值的损失和收益以及贷款的信用风险。而DM模型偏重于预测违约损失,只考虑两种状态:违约和不违约,不考虑信用等级的变化。
  很明显,KMV仅着重于违约预测,属于DM模型。Credit?鄄Metrics是一种多状态的模型,能够较为精确地计量信用风险的变化和损失值,属于MTM模型。麦肯锡模型既可以被看作MTM模型,也可以被看作DM模型。CreditRisk+是DM模型,没有考虑信用等级与相关性。死亡率模型是DM模型。

您可以访问中国科教评价网(www.NsEac.com)查看更多相关的文章。


  (二)风险的影响因素
  MTM模型假定企业的资产价值和资产价值的波动性是违约风险的主要影响因素,而DM模型假定的是违约率平均水平及其波动性,即平均违约率是违约风险的主要影响因素。
  在KMV法中,公司的资产价值服从正态分布,预期违约率(EDF)随着新信息被纳入股票价格而发生变化。股票价格的变化以及股票价格的波动性成为KMV中预期违约率变化的基础。在CreditMetrics中,违约概率以及信用等级的变化被模型化为基于历史数据的信用转移矩阵,不考虑市场风险,违约率被视为离散变量。在麦肯锡模型中,将宏观因素纳入到模型,违约率考虑了经济周期的影响,因而,风险的波动受总体经济环境的影响。在CreditRisk+里,违约率被视为连续变量,并且违约次数服从泊松分布,没有考虑市场风险,而且违约风险与资本结构无关。在死亡率模型中,风险的测定与判断只是基于历史上的各因素对风险的影响情况,没有考虑宏观经济环境对死亡率的影响。
  (三)数据依据基础
  不同模型所依据的数据基础不同。KMV模型以股票市场数据为基础,包含比较多的市场信息。CreditMetrics采用历史数据,也就是“向后看”的方法。麦肯锡模型数据在一定程度上运用了历史值,但它同时又考虑了宏观的因素,对商业周期也予以考虑,对当期受到的冲击也很敏感,因此能够在一定程度上修正CreditMetrics的偏差。CreditRisk+中数据要求简单,需要输入的数据少,基于历史数据确定某频段的平均违约率。死亡率模型是简单的依靠历史数据预测违约损失,采用的参数比较少,但若要保证测算的精度,需要大规模的包括各等级的债权工具的历史观测值样本。

  (四)回收率
  损失的分布和VaR值的计算不仅取决于违约的概率,也取决于损失的严重程度或给定违约概率下的违约损失(LGD)。KMV法的简单模型中回收率被看作是常数,该模型新近的发展中允许回收率服从beta分布。CreditMetrics中,当贷款市值服从正态分布时,估计的回收率的标准差可以用于VaR的计算;当贷款市值为实际分布时,可以利用转移概率矩阵和对应的贷款价值表近似计算不同置信度下的VaR值和回收率。显然,回收率是可变的。麦肯锡模型是在CreditMetrics的基础上对转移概率矩阵进行了调整。如果它是用于计算对经济周期敏感的VaR值,那么,回收率是可变的;如果它是用于计算周期影响下的违约损失率,那么,回收率为常数。CreditRisk+中可按风险暴露将信贷组合划分为若干频段,在每个频段中信贷组合的回收率可视为常数。死亡率模型为DM模型,回收率采用历史统计数据的平均值,为常数。

    上一篇:浅论从紧货币政策对资本市场的影响范 下一篇:没有了