计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

轧辊偏心问题的理论分析和冷轧板板带厚度控制(4)

2013-06-26 01:08
导读:(2.26) (2.27) 这就是有限长序的离散付立叶变换对。 上两式所示的离散付立叶变换对可以看成是连续函数在时域、频域取样所构成的变换,可以看作是连续付
             (2.26)
                        (2.27)
这就是有限长序的离散付立叶变换对。
 上两式所示的离散付立叶变换对可以看成是连续函数在时域、频域取样所构成的变换,可以看作是连续付立叶变换的近似,是一种很有用的变换方法。然而,当数据有较长的长度时,这种变换的计算量是很大的。分析式(2.26) 和式(2.27)可知,当用直接方法计算DFT时,总运算量及总运算时间近似地比例于,这在很大时,所需的运算量及总算时间近似地比例于,这在很大时,所需的运算量非常可观,要想用DFT方法对信号作实量处理一般是有困难的。
 ⑵ 快速付立叶变换(FFT)
 快速付立叶变换是为减少DFT计算次数的一种快速有效的算法。它使DFT的运算大为简化,运算时间一般可缩短一至二个数量级,其突出的优点在于能够快速高效地和比较精确地完成DFT的计算。
 FFT改善DFT运算效率的基本途径是利用DFT中的权函数所固有的两个特性,一个是的对称性,即,另一个是的周期性,即。利用的对称性,可根据正弦和余弦函数的对称性来归并DFT中的某些项,结果可使乘法次数约减少一半。假定是一个高复合数,可利用权系数的周期性,把点DFT进行一系列分解和组合,使整个DFT的计算过程变成一个系列迭代运算过程。因为迭代运算的计算量要比直接计算的计算量少很多,尤其是当很大时,可能成百位甚至成千倍地减少。快速付立叶变换算法正是基于这一基本思想而发展起来的。权系数的周期性是导出FFT算法的一个关键因素,高复合性则是实现FFT算法的一个重要条件。根据不同的分解方法,可以导出多种FFT算法,如按时间抽取的FFT算法,按频率抽取的FFT算法,的高复合性则是实现FFT算法的一个重要条件。根据不同的分解方法,可以导出多种FFT算法,如按时间抽取的FFT算法,按频率抽取的FFT算法,为复合数的FFT算法等。时域抽点算法的迭代过程是基本在每级把输入时间序列分解为两个更短的子序列,频域抽点算法的迭代过程则基于在每级把输出频率序列分解成两个更短的子序列。 (科教范文网http://fw.NSEAC.com编辑发布)
 以2为基时域抽点FFT算法是最基本最常用的算法,基2算法要求采样点数为2的整数次幂。设有一个点序列,而,首先将按序号之奇偶分解为两个点的子序列,因而得:
                                    (2.28)
 如采用下列变量替换:(当为偶数时),(当为奇数时),则上式可变为:
                       (2.29)
又因
 
所以上式又可改写为:
                           (2.30)
由于对于均有定义,而及只对有定义,因此,有必要就情况下对2.30作出说明。根据DFT的周期性可得:
                        (2.31)
考虑到:   
 
则上式可改写为:
           (2.32)
经整理后得:
 
                            (2.33)
式中:和可分别写成序列和的点DFT。
 式(2.33)表明,一个点DFT可分解成两个点DFT,而这两个点DFT又可组合成为一个点DFT,效果是相同的,但是运算量却大不相同。很明显,如果以一次复乘和一次复加称为一次运算,那么,计算两个点DFT约共需运算,此外再加上按式(2.33)组合需要次运算,所以按先分解后组合的方式计算一个点DFT总共约需次运算。当较大(即)时,它的运算量比直接运算点的DFT约可减少一半。 (科教作文网http://zw.nseAc.com)
 因为是2的幂,所以可进一步将每个点子序列按奇偶号分解为两个点子序列,再令每两个点子序列组合成一个点DFT……。上述分解过程还可继续进行,直到第次分解,每个子序列都只有两点。这样,就把点DFT的运算转化为级组合运算,M级组合就是M级迭代过程。每次迭代要求N/2次复乘和N次复加,M级迭代约需次复乘和次复加。每次迭代要求次复乘和点DFT的迭代运算过程是基于在每级把输入时间序列分解成两个更短的子序列,因此称为时域抽点算法。图2.4 说明了此迭代运算过程。
 
 
图 2.4   N点基2 FFT的M级迭代过程
 经过FFT变换结果,就可以计算出各次谐波的振幅和相角,从而建立轧辊的偏心模型,其振幅A=,相角,频率随轧辊速度变化而变化。
 偏心模型还必须转换为与采集脉冲对应的离散点的模型,即将带有三个参数的正弦波偏心模型转换成128个脉冲对应的离散点模型。轧辊偏心控制对检测和控制系统的准确性和快速性要求很高,定位定点采样保证了通过数据处理获得的偏心模型的唯一性和准确性。把正弦波的一个周期分成N段,列成表格,用步长DELTA扫过这个表,用序号作为角度参数,查表求出序列的值。假设每两个采样点之间的时间间隔维t,则正弦频率为。当步长不是
上一篇:冷轧SISO板厚控制过程中轧辊偏心的重复控制-自动 下一篇:没有了