轧辊偏心问题的理论分析和冷轧板板带厚度控制(7)
2013-06-26 01:08
导读:(2.47) 又由式(2.46)可得: (2.48) 最后,根据式(2.41)、式(2.42)和式(2.43)可得出当采样的持续时间不是信号周期的整数倍时,周期分量的复振幅为: (2.49) ② 第二
(2.47)
又由式(2.46)可得:
(2.48)
最后,根据式(2.41)、式(2.42)和式(2.43)可得出当采样的持续时间不是信号周期的整数倍时,周期分量的复振幅为:
(2.49)
② 第二步改进(Modified MFFT)
如前所述,经过第一步改进后的快速付立叶变换算法用
(2.50)
确定第k次谐波的角频率,0<<1,T为采样持续时间,是周期分量的绝对频率。然而,就偏心控制问题而言,轧辊偏心信号的绝对频率是随着轧制速度的改变而变化的。在速度变化较大或速度变化频繁时,再以绝对频率做为偏心模型参数,不仅不方便,而且会影响信号处理结果和控制结果的准确性和可靠性。考虑借助于某种仪表,把支持辊每转一周的采样点数固定,将绝对频率的计算转换为信号相对于支持辊转速的相对频率的计算。
假设信号采样周期为,总的采样点数为,那么总的采样持续时间可表示为:
(2.51)
(科教作文网http://zw.ΝsΕac.cOM编辑)
又假设支持辊每转一周,固定的采样点数为,那么轧辊转动的角频率可以表示为:
(2.52)
由上两式就可以得出偏心信号与支持辊之间的相对频率
(2.53)
利用式(2.53)计算的频率值作为轧辊偏心模型参数之一,不仅使信号检测过程更方便,信号处理结果更可靠。而且更有利于控制方案的制订和实施。
MMFFT算法流程图如图2.6所示。
应用MMFFT方法的偏心控制方案
如前上述,在轧机运转过程中,支持辊偏心反映在辊缝、轧制压力和带钢厚度上,是一复杂的高频周期波,其变化幅度取决于轧辊偏心量的大小,其变化频率与轧机的主机速度成正比,即此偏心信号的变化周期是随轧速度的变化而变化的。为此,采用改进的快速付立叶变换算法(MMFFT)来检测此偏心信号,获得信号中所含各次正弦波的幅值、频率和相角,建立偏心模型,进而实施控制。
基于以上分析,采用预先模型识别与在线参数自动修正相结合的方法,实现偏心模型的检测与偏心影响的在线补偿。
⑴ 第一种方案
首先,在轧辊预压靠时,对压力仪测出的轧制压力信号进行采样。然后,运用MMFFT对该采样信号进行运算处理,根据产品精度要求,取出一定次数的基波和谐波分量,作为支持辊偏心在轧制压力信号上的反映,通过轧制压力与辊缝的关系,得出轧辊偏心信号的原始模型,该模型即为以后控制的基础。在预压靠时取原始模型具有一些优点,如可以减少带钢的浪费,保证在正常轧制开始的同时,偏心控制器也投入也运行。此外,由于预压靠时不存在来料厚度、硬度波动和张力变化等一系列干扰因素的影响,有利于提高模型检测的精度。当然,这样做也有其自身的问题,这是因为压靠时的轧机状态、轧辊受力情况等均与正常轧制时有差