论文首页哲学论文经济论文法学论文教育论文文学论文历史论文理学论文工学论文医学论文管理论文艺术论文 |
论文关键词:效用函数 临界保费 理赔
论文摘要:根据保险人保险定价的效用方程,分别讨论了在3种不同效用函数下的临界保费.
从管理决策的角度看,保险产品的定价问题、准备金提留问题、再保险自留额问题以及资产负债配比问题都是风险和不确定条件下的决策.从风险决策的理论和实践知道,合理的决策不仅取决于对外在环境的不确定的把握,而且取决于决策者对自身的价值结构判断.在保险学中,通过引入效用函数来描述决策者的风险态度、偏好和价值结构,并将它与潜在损失或理赔的概率评估有机结合起来,从更加综合的角度寻求诸多保险决策问题的解.
一般地,决策者的风险态度被分为三种类型:风险偏好、风险厌恶和风险中立,分别对应着他们的效用函数u(x)的曲线为上凸、下凸和直线三种情况.最普遍的情况是厌恶风险,本文重点讨论此种情况.
1 保险定价问题
引理1(Jensen不等式) 设决策者的风险是厌恶风险,即它的效用函数u(x)满足u′(x)>0,u″(x)<0,则对于随机变量X,成立如下不等式E[u(X)]≤u[E(X)].
假定决策者(保险人)拥有财富W.若要承保,则可以在原有财富W的基础上增加一笔保费收入G,但是得替被保险人承担风险,其财富变成了随机变量W+G-X,其中随机变量X表示风险,其概率分布为F(x).若不承保,则保险人确定地拥有财富W.设保险人关于确定量和关于随机变量分布的效用函数分别为u(x)和U[X],则对保险人而言,“合理”的承保保费应满足不等式U[W+G-X]≥u(W).G越小,要承保的效用U[W+G-X]越小,当G小到使等号成立时,承保已无任何吸引力,所以保险人愿意接受的最底保费G*是使得上式等号成立的临界值,称为临界保费.
根据期望效用原理,随机变量X的“效用”U[X]可以转化为随机变量函数u(X)的期望,即
U([X])=E[u(X)]=∫Du(x)dF(x).
其中F(x)是随机变量X的分布函数,D是随机变量X的取值范围.
2 主要结论
对于风险决策者常用的效用函数有以下几种:直线型效用函数、抛物线型效用函数、指数型效用函数、对数型效用函数和分数幂型效用函数等.下面给出前3种情况下的临界保费.命题
1 设保险人的效用函数为直线型,
u(x)=ax+b,理赔X的概率分布为F(x),则临界保费G*=E[X].
证明 考虑保险人定价的效用方程为
U([W+G*-X])=u(W).
∵U([W+G*-X])=E[u(W+G*-X)]
=E[a(W+G*-X)+b]