计算机应用 | 古代文学 | 市场营销 | 生命科学 | 交通物流 | 财务管理 | 历史学 | 毕业 | 哲学 | 政治 | 财税 | 经济 | 金融 | 审计 | 法学 | 护理学 | 国际经济与贸易
计算机软件 | 新闻传播 | 电子商务 | 土木工程 | 临床医学 | 旅游管理 | 建筑学 | 文学 | 化学 | 数学 | 物理 | 地理 | 理工 | 生命 | 文化 | 企业管理 | 电子信息工程
计算机网络 | 语言文学 | 信息安全 | 工程力学 | 工商管理 | 经济管理 | 计算机 | 机电 | 材料 | 医学 | 药学 | 会计 | 硕士 | 法律 | MBA
现当代文学 | 英美文学 | 通讯工程 | 网络工程 | 行政管理 | 公共管理 | 自动化 | 艺术 | 音乐 | 舞蹈 | 美术 | 本科 | 教育 | 英语 |

最优灾情巡视路线模型

2013-09-03 01:04
导读:数学论文毕业论文,最优灾情巡视路线模型论文样本,在线游览或下载,科教论文网海量论文供你参考: 摘要

摘要

本文依据某县的公路网示意图,求解不同条件下的灾情巡视路线,1为定组巡视,2位限时巡视,并总结出1些在这类图中求最优回路的有效法则。文中首先将县城公路示意图转化为赋权连通图,并通过最小生成树将原权图分为若干子图,分析并给出在这些子图中寻找最佳回路的若干原则:扩环策略、增环策略、换枝策略,依据这些原则,求得不同条件下的巡视路线。
当巡视人员分为3组时,在要求总路线最短且尽可能均衡的条件下各组巡视路线分别为:159.3km,239.8km,186.4km。当要求在24小时完成巡视,各乡(镇)停留时间为2小时,各村停留时间为1小时时,至少需要分为4组,巡视完成时间为:22.4小时。
分析T,t和V的改变对最佳路线的影响不但于T,t和V的改变方式有关,而且与最佳路线均衡度的精度要求有关。

关键词:最优方法;最小生成树;连通图;Kruskal算法

ABSTRACT

On the basis of highway sketch map in a county, In this paper, the author tries to find out catastrophic scouting routes on different conditions. One is scouting in settled groups, the other is scouting in fixed time. And also summarizes effective principles about the most favorable circuit in this category of charts. The county highway sketch maps was transformed into value-endowed connected charts firstly, and divided the original value maps into several child charts through Minimum Cost Spanning Tree. By analyzing these child charts, several principles of the best circuit was found out, which was expanding strategy, circle strategy, branch-exchange. And on the basis of these strategies, scouting routes on different occasions was tried to find out. 
Under the situation of dividing the scouting personnel into 3 groups, the shortest total route and as equilibrium as possible, each group of scouting route respectively is: 159.3km, 239.8km, 186.4km. If it was required to be finished scouting within 24 hours, they can be stayed at each county for about two hours and one hour in each village. The whole personnel must be divided into at least 4 groups and thus the required finishing time is: 22.4 hours. (科教作文网http://zw.NSEaC.com编辑发布)
The changes of T, t, V influence the most favorable route in the following ways: the relationship between T, t, V and the most favorable route is: it is  not only related with the changing way of T, t and V, but also related with the precision requirement of the most favorable routes equilibrium.

Keywords: the best favorable method;Minimum Cost Spanning Tree;Connected chart;Kruskal arithmetic

    上一篇:汽车市场的前景分析模型 下一篇:没有了